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ABSTRACT 

Multi-touch technology lends itself to collaborative crowd 
interaction (CI). However, common tap-operated widgets 
are impractical for CI, since they are susceptible to 
accidental touches and interference from other users. We 
present a novel multi-touch interface called FlowBlocks in 
which every UI action is invoked through a small sequence 
of user actions: dragging parametric UI-Blocks, and 
dropping them over operational UI-Docks. The FlowBlocks 
approach is advantageous for CI because it a) makes 
accidental touches inconsequential; and b) introduces 
design parameters for mutual awareness, concurrent input, 
and conflict management. FlowBlocks was successfully 
used on the floor of a busy natural history museum. We 
present the complete design space and describe a year-long 
iterative design and evaluation process which employed the 
Rapid Iterative Test and Evaluation (RITE) method in a 
museum setting. 
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ACM Classification Keywords 

H5.m. Information interfaces and presentation: User 
Interfaces. – Graphical User Interfaces.  

General Terms 

Design, Human Factors. 

INTRODUCTION 

Interactive tabletops and multi-touch surfaces are a growing 
area of human-computer interaction research, and recent 
studies have focused on the use of such devices in real 
world contexts including museums, galleries, and urban 
spaces. Indeed, informal learning environments such as 
museums have emerged as one area in which multi-touch 
interfaces can be meaningfully applied [15, 16, 17, 30]. The 
high-bandwidth input capabilities coupled with an inviting 
form factor seem ideal to facilitate the degree of social 
learning that is desirable in a museum context Such 

examinations have discovered that this context creates 
unique circumstances, that we call crowd interaction (CI) 
[15, 16, 17, 19, 23, 29, 30]. When designing user interfaces 
for crowds, one has to deal with the known “chaos” that 
arises when groups of strangers from various age groups 
and backgrounds spontaneously come together to 
“collaborate” (cf. Fig. 1): accidental touches are frequent 
[17, 36]; parallel interaction is the norm [17, 23, 29, 36]; 
levels of interference are high [16, 27, 29]; conflicts 
between participants commonly arise [16, 23, 29]; and 
mutual awareness amongst users regarding each other’s 
actions and intentions cannot be considered a given [23, 
29]. Additionally, UI standards for crowd interaction do not 
yet exist [40] and users approach gestural interfaces in a 
variety of different – and often conflicting – ways [16, 17, 
42]. At the same time, average dwell times are low (around 
four minutes for a successful exhibit), making it hard to 
accommodate the significant training associated with 
teaching gestures to novice users [5, 6, 8, 11]. Overall, 
bringing order to the “chaos”, while providing a UI that 
everyone can almost instantly use, is a significant challenge 
that every interface designer targeting crowd interaction 
must overcome. 

Standard multi-touch UIs (such as the Microsoft Surface 
SDK [1]) provide a set of conventional widgets adapted for 
touch, that can be easy to learn (as they facilitate the 
transfer of desktop idioms, e.g. “click” � “tap”) [42], and 
also scalable by providing functional coverage for most 
application scenarios. However, widgets that rely on 
tapping graphical elements on the tabletop do not perform 
well in chaotic crowd interaction circumstances, as they are 
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Figure 1. Chaos in a museum (frame from a video). 



 

highly susceptible to interference from accidental and 
uncoordinated touches [17, 23, 36]. An alternative way of 
circumventing these issues is to design “UI-less” multi-
touch applications, such as the “media-sharing”-type of 
application that primarily relies on the basic manipulation 
of graphical objects (drag/resize/rotate) [3, 4, 16, 17, 22, 
29], or interaction with physical phenomena that inherently 
lend themselves for multi-point interaction [33, 41]. These 
types of applications may cope well with the chaos, but the 
need for scalability limits the degree to which simple 
physics-based approaches can be effective [42]. This 
motivated our efforts to go beyond “UI-less” multi-touch 
applications, and to push towards a fully functional UI that 
enables a wide spectrum of interaction semantics, while 
being tailored to the requirements of crowd interaction. 

In this paper, we propose FlowBlocks, a novel multi-user, 
multi-touch interface that relies on drag & drop as the 
primary input primitive. Every action is triggered by 
dragging a Block and dropping it over a Dock (see Fig. 2). 
To successfully execute a function, a user has to first pick 
up the Block, drag it across a certain trajectory – signaling 

intent to act to other users – and drop it over the target 
Dock to execute the intended action.  

Promoting Drag & Drop to the primary means of 
performing all system functions provides inherent 
advantages in the context of crowd interaction. First, it is 
less prone to being activated by accidental or uncoordinated 
touches (or “fiddling” which occurs frequently with 
children around a multi-touch surface), particularly when 
the start and end points of the drag & drop are farther apart 
and when other trajectory-related constraints apply. 
FlowBlocks provides several design parameters that a 
designer can use to “fortify” their UI. Secondly, tapping 
and holding are freed to act as initiators for feedforward 
mechanisms that instruct novice users on how to use the 
application and its UI. Thirdly, as we will demonstrate, drag 
& drop interaction with UI widgets introduce several design 
parameters that can help promote mutual awareness and 
conflict management between users. We have developed 
FlowBlocks, and established its core qualities, during a 
year-long process of Rapid Iterative Testing and Evaluation 
(RITE [24]) in one of our partner museums. 

The contribution of this paper is threefold: after discussing 
related work, we present the FlowBlocks design space, 
providing details about our core principles, components, 
and design parameters. We then illustrate how common UI 
controls can be realized or replaced using FlowBlocks 

widgets, demonstrating functional coverage for the full 
range of application scenarios. Finally, we present the 
evaluation used to yield the current design of FlowBlocks, 
conducted while they were in use in a deployed application 
in one of our partner museums, and discuss our findings. 

RELATED WORK 

Of particular relevance to FlowBlocks is work that 
addresses multi-user interaction conflict management and 
mutual awareness, identifies problems with tap-based 
actions, or provides motivation for drag & drop as input 
primitive. Additionally, we discuss research that extends 
existing multi-touch UIs, UIs based on new input 
primitives, and tangible UIs. 

Conflict Management and Mutual Awareness  

A series of studies have pointed out that a variety of 
conflicts that commonly arise in multi-user use of 
interactive surfaces [7, 22, 25, 26, 29, 32, 36]. This includes 
conflicts through the sudden occlusion of screen real-estate 
or unexpected changes to the state of application [7, 29, 
32], conflicts caused by accidental touch [36], or power 
struggles [22, 29]. Several approaches have been presented 
to address this issue: reducing conflicts through creating 
mutual awareness [7, 25]; negotiating UI access based on 
user identity [26, 31]; and enabling physical negotiation 
techniques [18, 22, 28]. 

FlowBlocks provides means of addressing conflict through 
awareness and physical negotiation: similar to the sketching 
gestures presented by [7]. Drag & drop provides a certain 
precursor to an action, particularly when performed across 
shared space. This approach builds on the Privileged Object 
policy [25], which suggests moving actions affecting all 
users to a shared space. Similar to physical objects, 
dragable graphical objects afford ways to utilize 
territoriality and negotiating for access (rather than fighting 
after the fact), commonly observed as natural behaviors 
when children interact in groups [18, 22, 28]. 

Morris et al. propose that social protocols are insufficient 
for facilitating sharing in some use scenarios, and describe a 
series of policies that can enforce “good behavior” among 
users [25]. With FlowBlocks, we follow a fundamentally 
different philosophy: we believe that social protocols are 
not inherently insufficient, but rather that UI’s based on 
point-and-click provide insufficient cues to facilitate mutual 
awareness and thus underserve the needs of social protocols.  

Problems with Tap-Based Actions 

Existing multi-touch UIs, such as Microsoft’s Surface SDK 
and Apple’s iOS, adapt conventional UI widgets (such as 
buttons, drop down lists or radio buttons) to touch input, 
utilizing finger-tapping as the equivalent to clicking in the 
WIMP GUIs. While this allows a transfer of knowledge 
between traditional UIs and novel multi-touch systems, the 
lack of a hover state in touch devices eliminates helpful 
feedforward and feedback mechanisms [11, 40]. Further, 
studies observing crowd interaction report that erroneous 

 

Figure 2. FlowBlocks basic principle: every action is  
executed by picking up a Block, dragging it along a  

certain trajectory, and dropping it over a Dock. 



 

touches lead to the frequent occurrence of false-positive 
invocation of actions, causing misinterpretation of UI 
behavior [36], and general confusion [17]. While erroneous 
touches can be accidental, in many cases they are 
intentional – caused by users who either don’t realize or 
don’t care that their actions will interfere with others. While 
certain mechanisms can be applied to reduce the negative 
effect of unintended or unnoticed touches – timeouts to 
prevent repeated activation [17] and confirmation dialogs 
[23] – these mechanisms can themselves lead to 
unresponsiveness, confusion [17], and tension between 
users [23]. Based on our own experiences in building museum 
exhibits, we concur with these findings, and consider 
standard multi-touch UIs unsuitable for crowd interaction. 

Drag & Drop  

Dragging is one of the most common modalities observed 
when users spontaneously approach tabletop UIs [16, 42]. 
Evidence for the success of dragging as an input modality is 
also provided by a series of “picture-sharing” type of 
tabletop applications, in which dragging responds well to 
interference and accidental touches [3, 16, 18, 22, 29]. For 
example, the “Futura” tabletop game [4] allows users can 
drag strategic resource tokens from a toolbar (situated at the 
four sides of the table) and drop them over an environment 
simulation in board-game like fashion (causing an effect in 
the outcome of an application). The authors reported that 
drag & drop worked well despite intense collaboration, and 
that users quickly learned how to place game tokens. 
Overall, dragging seems to be an input primitive that can be 
easily learned and performed by a variety of different users. 
This motivated us to promote dragging as the primary 
interaction primitive to prepare the execution of an action. 

Extending Existing UIs 

There is a series of work that aims at extending aspects of 
existing conventional UIs to multi-touch operation: the 
DiamondSpin Toolkit [32] provides a series of novel UI 
mechanisms to facilitate around-the-table interaction, such 
as multi-threaded input event streams and concurrent 
menus; Multi-touch Marking Menus aim to increase the 
bandwidth of touch input [21]; Attribute Gates utilize 
dragging trajectories across various graphical gates to adapt 
the object’s attributes to different territories on the tabletop 
[35]; and Grids & Guides [12] increase the precision of 
multi-touch manipulations. FlowBlocks is designed for 
crowd interaction, and thus has less emphasis on some of 
these aspects, such as precision and throughput.  

Graphical UI widgets that are operated through a drag-like 
gesture have been proposed before, albeit for other devices, 
motivated by different factors, and afforded with different 
metaphors [5, 27]. Like FlowBlocks, CrossY [5] replaces 
WIMP widgets with new UI controlled with a new input 
primitive: crossing. This is done because crossing is more 
efficiently and more accurately performed with a pen. 
Similarly, Moscovich [27] presented a set of widgets 

selected using sliding motions, aiming to reducing selection 
ambiguity on high resolution screens in which UI widgets 
are tightly packed. Gestures similar to “crossing” and 
“sliding” can be described as sub-primitives of drag & drop 
and have been incorporated into FlowBlocks. 

Teaching Multi-Touch Gestures 

One challenge for novel UIs is to be transparent to novice 

users [4, 5]. Consequently, there has been a series of work 

aimed at teaching touch and gesture-based input: to learn 

Marking Menu style gestures [20], OctoPocus [6] provides 

a dynamic guide that help users execute, learn, and 

remember gesture sets; ShadowGuides [11] provides in-situ 

guides that show a visualization of the user’s fingers 

(feedback) alongside possible ways of continuing a gesture 

(feedforward). OctoPocus and ShadowGuides require the 

user to first understand the meaning of the visualizations 

they provide, thus, the process of training itself requires 

some degree of learning which is not practical in a CI 

setting where a walk-up-and-use is essential. In contrast, 

GesturePlay [8] provides an online learning system for 

teaching gestures through game-like virtual-physical 

widgets and positive reinforcement. Here, the mechanism 

for teaching gestures utilizes physical puzzles that the user 

can solve and in the process learn the execution of a 

gesture. Just-in-Time Chrome provides UI tailored to evoke 

various gestures [40]. It is also central to FlowBlocks to 

provide similar inline mechanisms that can help visitors 

quickly learn the operation of drag-based widgets. Elements 

of OctoPocus and GesturePlay have been incorporated in 

the design of FlowBlocks’ inline-feedback and 

feedforward. ShadowGuide’s use of the ‘tap’ gesture to 

invoke feedforward mechanisms has also been incorporated. 

FLOWBLOCKS DESIGN SPACE 

In FlowBlocks, the most elementary functional unit of 

interaction – invoking a binary command – is triggered by a 

compound action requiring the execution of two binary 

actions and one continuous action: acquisition of a Block 

(binary), dragging the Block over a Dock (continuous) and 

releasing the Block (binary). FlowBlocks intentionally 

separates the three components previously required for a 

binary action. In this section we will show how this 

separation can be beneficially used to address the challenges 

of crowd interaction. Based on our analysis of related work, 

we concentrated on designing FlowBlocks to meet these 

three challenges: 

1. Noise and interference: minimize the effect of 

accidental touches and uncoordinated “fiddling”. 

2. Mutual awareness and conflict management: increase 

awareness between users regarding their intention and 

actions, and provide tools for negotiating conflicts. 

3. Learning how to interact: any user must be able to use 

an interface almost instantly and without training. 



 

The following subsections describe the mechanics relating 

to each point at the conceptual level of FlowBlocks. In the 

next section we will present practical guidelines for 

applying FlowBlocks in practice. 

Dealing with Noise and Uncoordinated Interference 

Generally, FlowBlocks widgets are less susceptible to 
accidental touches, because touches alone do not trigger an 
action, but only cause feedforward to appear. However, 
accidental touches could still coincide to form a sequence 
that mimics a drag operation, potentially triggering an 
unintended action. For this to happen, an accidental touch 
would have to start over the position of a Block, move 
across a certain trajectory, and drop the Block over the 
corresponding Dock. While we found this to very rarely 
happen in practical use, FlowBlocks provides three 
parameters that can further reduce the likelihood, which we 
will review in turn: increasing the distance between Block 
and Dock, requiring Dock activation, and constraining the 
trajectory of the drag component. These methods are not 
only a means of counteracting accidental touches, but can 
also be used to reduce the effect of uncoordinated “fiddling”, 
which is especially prevalent among younger children. 

Constraining trajectory. Figure 3 provides several 
examples for trajectory constraints: a) constraining 
movement to a path, b) using virtual barriers through which 
Blocks cannot pass, and c) & d) requiring certain speed of 
drag to allow a Block to reach the Dock. These constraints 
require more coordination and intent from a user in order to 
successfully complete an action, which reduces the action’s 
susceptibility to noise and uncoordinated touches.  

Dock activation. Docks can be configured to require 
explicit activation before Blocks can be dropped over their 
active area, which adds another layer of intent and 
coordination that is required to execute an action: 

• Tap-to-activate: tapping a dock “opens” it for a certain 
time window. 

• Hold-to-activate: the dock is receptive to a Block for 
as long as a touch is held in its active area. 

While the presented mechanisms of constraining 
trajectories and dock activation counteract the effect of 
accidental and uncoordinated touches, they are also useful 
in the context of mutual awareness and conflict 
management amongst users. Several other mechanisms of 
FlowBlocks also help to address this design challenge.  

Mutual Awareness and Conflict Management  

Mutual awareness is key factor in the fluidity and 
naturalness of collaboration, and in allowing social 
protocols to facilitate interaction [13]. By being aware of 
other’s intentions and actions, conflicts can be detected and 
negotiated [7, 25]. FlowBlocks’ core primitive – drag & 
drop – consciously separates the intent to interact – 
selecting a Block and dragging it towards a Dock – from 
executing the intended action – dropping the Block over the 
dock (cf. Fig.3). This gives users the chance to become 

aware of an incoming action, decide if it conflicts with their 
interests, and intervene. While intervention can always be 
carried out through social etiquette (“Wait! Don’t do that 
please!”), FlowBlocks also seeks to cater for more physical 
negotiation strategies that are commonly applied by 
younger children [16, 22, 28]. Consequently, each of 
FlowBlocks’ basic components – Blocks, trajectories and 
Docks – affords independent ways of physical intervention. 
Blocks can be “claimed” and moved into a private space, or 
shielded from other users. Similarly, Docks can be shielded 
from an approaching Block, for instance by covering it with 
the hand, preventing the Block from being dropped. Users 
can also physically influence the trajectory of a drag-
operation, for instance by otherwise “blocking the way”, or 
pushing the respective hand away. 

FlowBlocks draws inspiration from tangible computing [10, 
14, 39, 37], particularly from the Token and Constraints 
(TAC) paradigm [34, 38]. Promoting virtual blocks that 
users can manipulate as the primary UI primitive, makes it 
possible to apply physical metaphors and constraints to 
each interface action, opening up a spectrum of design 
options that are not usually considered by existing, widget-
based multi-touch UIs (cf. Fig. 3). 

Influencing mutual awareness. FlowBlocks provide three 
parameters that can be adjusted when designing for 
awareness. First, positioning of Block and Dock are 
extremely important, not only because longer distances 
allow more time to become aware of the drag, but also 
because it has an impact on what portion of the interactive 
area has to be crossed. If drags happen in the periphery, they 
are less likely to cause global awareness than drags that cross 
shared, central space. Second, the designer can promote 
awareness using the same trajectory constraints we described 
for reducing noise and uncoordinated actions (Figure 3). 
Speed-dependent wrappings ensure easily observed rapid 
movements (c) or extra time (d). For instance, access to an 
important global function could be surrounded by “rubber”, 
providing others more time for anticipation and intervention. 

 
Figure 3. Constraining trajectory of drag operations: a) 

rails limit the movement of a block along a predefined path 
(“allow” policy); b) barriers define regions through which a 
block cannot pass (“deny” policy); c) ramps and d) rubber 

pads require a certain velocity of the drag operation in 
order to reach the target Dock. 



 

Virtual barriers and paths create recognizable movement 
patterns and “bottlenecks” through which each action has to 
pass (a,b). These parameters can be chosen per action: 
actions that affect all users (e.g. reset the application) can 
combine any of these factors to achieve the desired global 
awareness, while more personal functions can omit them. 

Learning from others. Existing observations have provided 

strong evidence that visitors learn from each other [16, 17], 
by copying each other’s actions. This provides further 

motivation for increasing mutual awareness as it gives 
particularly novice user approaching the table, as well as 

younger children or elders, to learn and copy interactions 

observed from more advanced participants. 

Managing simultaneous interactions. A special case of 

conflict is the simultaneous manipulation of shared 

resources – dubbed global coordination [26]. For instance, 
in a map application, the current view on the map is a 

shared resource in that changes will impact on anyone 
around the table, even if they are engaged in independent 

sub-tasks (such as looking at different parts of the map). 

Operations on this shared resource (e.g. jumping to another 
country) have to be regulated in that only one person can 

manipulate the resource at a time. In crowd interaction, the 

common case is that a single person triggers such an action, 
while others are interrupted in their task, and potentially 

confused about why this action is happening. FlowBlocks 
can be used as described previously to create awareness and 

enable anticipation of global events. Additionally, the 

Block-Dock metaphor inherently conveys what actions can 
be executed simultaneously. If a Dock is occupied, it can be 

“locked”, causing any attempt to drop another Block into it 
to “bounce off”, until the associated action is completed 

(e.g. the view has zoomed to a new country on the map). It 

is also possible to configure Docks to remain open, so that 
the existing action can be interrupted by removing the 

occupying Block, or by dropping a new Block onto the 

Dock, causing the previous one to “fall out”. While this 
mutual locking is possible with existing multi-touch widget 

through “graying out” UI elements that are currently 
inaccessible, FlowBlocks inherently convey and reflect the 

state of execution, and the availability of functions. 

Learning 

Due to the lack of UI standards for crowd interaction [40] 

and a variety of different ways in which users approach 
gestural interfaces [16, 17, 42], any crowd UI has to clearly 

convey its meaning to inexperienced users. This aspect is 
particularly emphasized in a museum context, as dwell 

times are usually short, and as a consequence, the learning 

of the interface cannot take up more than a few seconds.  

In conventional GUIs, the pointer’s hover state can be used 

to instruct novice users how to interact – such as to show 

tooltips when the mouse pointer is dwelling over a control. 
Preview states, however, are sorely missed in a 

straightforward port of WIMP UI to touch environments 
[11, 40]. FlowBlocks introduces a novel state model for its 

widgets that adds two additional states to existing state 
models for touch-sensitive input devices [9]. Figure 4 

shows the state-transition diagram for a Block. As soon as a 

Block is touched, it enters a Tapped / Held state. This state is 
also retained for at least 3 seconds in case the user 

immediately retracts the touch – ensuring that a ‘tap’ gesture 

will also activate this state for a short duration. A second 
state Over Dock is entered as soon as a Block is moved over 

a dock (but not released yet). The remaining states 
correspond to the traditional three-state model of input [9]: 

Idle ~ State 0 (out of range), Dragging ~ State 1 (tracking) 

and In Dock ~ State 2 (state 2 refers to the activation of the 
input device, in our case, a Block occupying a Dock).  

Preview states can be used to teach both mode of operation, 

and mechanics of the application. Based on our state model, 
we can provide instructions at three moments where we are 

able to infer possible user confusion. First, we need to 
anticipate any graphical element to be tapped, including 

both Blocks and Docks, as tapping is the most consistently 

observed way users spontaneously interact with graphical 
elements [16, 36]. While in the state model Tapped / Held 

does not cause an action in FlowBlocks, we can utilize this 
state to convey the proper mode of operation to the user. 

 
Figure 4. FlowBlocks’ Block state diagram. 

 

 
Figure 5. Feedforward help: a) prompting to drag; b) 

showing directional guides leading towards compatible 
Docks and c) preview before the execution of an action. 

Managing screen clutter: d) using relative guides, e) 
weighing guide strength by distance to Dock. 



 

For Docks, we can provide appropriate feedback (cf. Fig. 

5d). For Blocks, we can instruct the user to drag, for 
instance, via a tooltip (cf. Fig. 5a). In case of a Block, 

instructions can persist throughout dragging and provide 
updated instruction and feedforward to help the user with the 

proper execution of an action, such as guided by arrows 

(Fig. 5b). Generally, all existing feedforward techniques can 
be applied, such as OctoPocus [6] or ShadowGuides [11]. 

The second moment of potential confusion within our state 

model regards the mechanics of the application. The Over 

Dock state can be used to provide a preview of what would 

happen if the currently dragged Block was dropped over a 
Dock (cf. Fig. 5c). This is equivalent to a traditional tooltip. 

Having designed FlowBlocks’ many parameters to overcome 

specific challenges inherent in crowd interaction, we now 
demonstrate their functional completeness. To do this, we 

designed FlowBlocks-based widgets that mimic the logical 

function of traditional WIMP UI elements. 

FLOWBLOCKS WIDGETS 

A significant challenge in the construction of UI elements 

based on a new physical primitive is the need to ensure 
functional coverage for application development. Previous 

efforts have accomplished this by redesigning WIMP UI 
widgets for use with their new primitives [5]. Our intention 

is not to mimic earlier controls, but rather to use them as a 

spanning set of logical actions required to create useful 
applications. Based on common GUI toolkits, we have 

identified 4 logical types of components that are required to 
cover most interaction semantics: Binary Triggers, 

Selections, Scalar Controls, and Menus. We omit logical 

compound components as long as they can be constructed 
using the five types of components we present (e.g. a File 

Open Dialog is a compound widgets, consisting of a 

scrollable container and binary controls).  

Figure 6 shows each of the five classes of controls that can 

be supported by FlowBlocks. We provide examples for 
three different binary controls: slider-trigger controls (a), 

similar to the “Unlock”-slider in iOS; (b) “url” like 

navigation based on a “Navigation”-Dock and several 
“URL”-Blocks; (c) an arrangement of two slider-triggers to 

peek into and open a photo album – combining FlowBlocks 

widgets in this way might lend itself to playfully teaching 
multi-point gestures to novice users, similar to [8]. 

FlowBlocks can support many types of selectors through 
the assembly of Blocks and Docks, as in examples (d) and 

(e). While Docks usually are limited to one occupant, they 

can also be considered as containers in which several 
elements can be placed (e). Sliders can be constructed by 

constraining a handle-Block within a rectangular area using 

a barrier, and filling the area seamlessly with as many 
docks as there are steps (f, g, h). Further mechanisms can be 

put into place to prevent the accidental adjustment of a 
slider: “gear-box-style” rails require the user to first lift the 

handle before it can be horizontally adjusted (g). 
FlowBlocks also affords various menu styles (i, j). Example 

(i) shows a menu in the form of a single Block. Once the user 

touches the Block, arrows point into three distinct directions, 
and activates invisible docks, as well as an invisible barrier 

that keeps the Block within the allowed area. If the user now 
drags the Block in a direction beyond the bounds of the 

barrier, it will automatically drop over one of the invisible 

Docks. Thus FlowBlocks are used to implement the scale-
independence and free-movement of a Marking Menu [20].  

These menus illustrate two more concepts that FlowBlocks 

can support: dynamically showing and hiding its constituent 
elements, as well as linking different states from our model 

to create more complex UI behaviors. 

Having demonstrated that FlowBlocks are logically complete 

across the functions of the WIMP GUI, we now address their 

design and integration into an application, as well as the 
iterative design process that led to the development of many 

of the design parameters we have discussed. 
 

 
 

Figure 6. Examples for FlowBlocks versions of common 
types of UI widget:binary controls, selectors, scalar 

controls and menus; Legend:  = rail,  = invisible Dock, 
 = invisible barrier. 



 

APPLICATION AND EVALUATION 

FlowBlocks is the outcome of a yearlong iterative design 
process in which we implemented a Microsoft Surface 
application, DeepTree, as part of a 3-year NSF Informal 

Science Education project. We directly observed over 280 
visitors at our DeepTree testing exhibit using talk-aloud 
protocols. The DeepTree is an interactive and multi-touch 
visual application that allows visitors to explore the 
evolutionary relationship and historical time of divergence 
of all life on earth. This relationship is visualized in the 
form of a large phylogenetic tree based on data from the 
Tree of Life Web Project [2] with over 70.000 species, and 
20.000 internal nodes. Figure 7a shows DeepTree 
application and its interface.  

The main area shows the Tree of Life, as well as images 
that mark the location of representative species in the tree 
(in the illustration, the root of the tree is visible, showing 
the three domains Bacteria, Eukaryotes and Archaea). Users 
can browse the tree of life with drag-based manipulation, 
dragging the tree downward to zoom-in towards the leaves, 
or upward towards the root to zoom-out.  

At the right side of the screen, a scrolling image reel of 200 
selected species-Blocks are shown. Visitors can scroll 
through the image reel by standard flicking techniques, or 
pull any species from the reel and move it above the tree 
(cf. Fig. 7b). Here, the Blocks gain a “chord” that visually 
links the block with the location of the species in the tree, to 
aid navigation and orientation (cf. Fig. 7c). Users can also 
perform Find and Relate queries using our Flow Blocks UI. 
An “Action” marking menu on the right side provides 
access to Find, Relate and Return (cf. Fig. 7d). Once 
dragged into a direction and dropped, the action Block 
morphs into a dialog which occupies the central area of the 
display (c.f Fig. e). The dialog presents one (Find) or two 
(Relate) Docks, respectively. The user executes an action 
by dragging species-Blocks into the Docks (cf. Fig. 7f). 
When a species-Block is dropped into a Dock, the tree 
seamlessly zooms and pans to show an appropriate view 
(similar to a map flying to a new city). For relate queries, 
this is a view of the most recent common ancestor (the 
point in the tree were both species separated), as well as 
visualizations of traits shared by the species which were 
dropped-in to the Docks. The Return dialog contains a 
trigger-slider (Fig. 6a), which flies the user back to the root 
of the tree. 

The aim of the exhibit was to allow visitors to explore 
evolutionary concepts and to casually browse the tree for 
any of the 70,000 species. The comparisons and searches 
provide a focused activity, and a natural end point, which is 
recommended in public venues with large crowds [36]. 

Method 

As part of our iterative design process, we used the RITE 
method (Rapid Iterative Testing and Evaluation [24]) 
throughout the year, testing the various stages of 
development and alternative versions of FlowBlocks inside 
one of the galleries at our partner museum. This method 
was well suited for our project for reasons of external 
validity: we wished to carry out our evaluations in the 
native setting where our exhibit will be installed when it is 
finished, and with actual visitors that spontaneously interact 
with our system. Our partner museum has over 170,000 
visitors per year from diverse backgrounds. Observations 
were carried out during weekdays – typically attracting 
school groups and summer camps – as well as on 
weekends, when many families visit the museum. 

RITE entails expert observations to drive quick design 
iterations. Both video footage and field notes were 
collected. Institutional Review Board permission was 
granted to gather video recordings of visitors without prior 
written consent, however, a video-taping notice had to be 
present during observations, and collected footage could 
only be used for internal analysis. Additionally, an observer 
was physically present, shadowing the museum visitors and 
taking notes from a discreet distance. After visitors finished 
interacting with the DeepTree they were approached by the 
observer and given the opportunity to provide verbal 
feedback, which could inform our design iterations. To 
reduce bias, an independent researcher who was not 
involved in the development and design of FlowBlocks 
carried out all observations. The criteria used to evaluate 
each RITE iteration were based on the three pillars of the 
presented design space: 
 

1. Create mutual awareness, and enable conflict negotiation, be it 
verbal or physical. 

2. Reduce (or eliminate) invocations of actions through accidental 
and uncoordinated touches (noise & interference).  

3. Visitors should learn to use FlowBlocks during the (typically 
short) time they interact with the system (learning to interact). 

 

Figure 7. The DeepTree exhibit (a) and FlowBlocks UI (b, c, d, e, f). 



 

New design iterations were begun as soon as it became clear 
that the design goal was not yet met, or when bugs prevented 
us from carrying out meaningful observations. Deployments 
between iterations varied in length and number of users, but 
were typically 1 week and approximately 20-40 observed 
users. In total, 10 iterations were conducted over 15 months, 
with over 280 visitors being observed. With this approach, 
our designs have been tested beyond most of the reported 
“in the wild” work [16, 23] in that we did not stop at one or 
two rounds of evaluation. Instead, our designs have been 
both designed and evaluated in the wild. 

Observations & Findings 

The FlowBlocks Design Space and Widgets, and Application 
sections describe the finished product of the RITE process, as 
well as several design parameters which, while clearly useful 
in some contexts, did not suit the particular design of the 
DeepTree exhibit. We now discuss observations gathered 
throughout the iterative design process, which will be of 
benefit to researchers and designers seeking to extend and 
apply FlowBlocks, and to those designing UI for crowd 
interaction in general. 

Everyone can Learn to Drag 

We found that nearly all users approach FlowBlocks in one 
of two ways: some instantly start dragging Blocks around 
and dropping them into Docks. Particularly children seem to 
require no instruction as to how FlowBlocks work, which 
indicates that they could infer the proper use from the visual 
design of Blocks and Docks shown in Figure 7e. These 
visuals were the 11th version tested. The second category of 
user starts by tapping Blocks or Docks. While at this point, 
feedforward can help the transition from tapping to dragging, 
we went through several iterations for this transition to 
happen quickly, and for all age groups. Initially, we used 
arrow guides that marked the potential routes from the 
dragged Blocks to the Docks, similar to those described in 
Octopocus [6]. The arrows persisted through the act of 
dragging and updated dynamically. While this effectively 
encouraged hesitant visitors drag, for kids, who readily drag 
as many species over the tree as possible, this technique lead 
to significant screen clutter, as many guides cross large parts 
of the display space. 

After several iterations, the final feedforward consisted of 
four mechanisms. First, if species Blocks within the image 
reel are tapped, for a brief moment the Block is slightly 
nudged outwards, and an animated arrow appears (Fig. 7b). 
This arrow is relatively small, and disappears as soon as the 
Block is dragged. This was effective in initiating the 
transition to drag, while not causing screen clutter during 
dragging, even when multiple elements where pulled out at 
the same time. Secondly, we used an animated visual effect 
of an ant-trail (cf. Fig. 7f) that surrounded both Docks and 
Blocks – to convey their functional dependency. This effect 
was only visible when an action dialog was in the center of 
the display (after being selected from the action menu). 
Thirdly, when tapping a dock, an animated hand shows up, 
performing a drag operation from the image reel to the Docks 

(cf. Fig. 7f). The described feedforward was effective for 
transitioning most visitors to dragging, but particularly 
seniors still showed hesitance and signs of confusion, even 
when all three mechanisms where active. Thus, we added a 
tooltip which was displayed when tapping either the Blocks 
or the Docks. The tooltip gives instruction in written form, 
and we found indicators in form of utterances during use that 
this textual information was effective in instructing adults 
and seniors, while not hindering kids (who do not read). 

After these modifications, FlowBlocks were consistently 
learned within the first few seconds of interaction. All groups 
approaching the table, including school groups and seniors, 
started carrying out actions almost immediately. Considering 
that UI standards for crowd interaction do not yet exist [40] 
and that user intuition regarding the “proper” use of such 
UIs widely differs [16, 17, 42], FlowBlock is effective in 
teaching a consistent operation of UI widget to a wide range 
of users. We found less evidence that users noticed the 
second type of feedforward (shown when a Block is 
dragged over a Dock). Users seemed willing to try out an 
action without precise foreknowledge of the result. This 
may be less true in settings where errors are costlier. 

Little Effect of Noise and Fiddling 

Our initial prototype of the exhibit was based on tap-
activated species-markers. Concurring with existing 

findings [17, 23, 36], we quickly disqualified this mode of 
invoking commands for our context, as accidental and 

random jumps prevented constructive collaboration, 

particularly in large groups. After introducing FlowBlocks, 
we did not observe any instances in which accidental 

touches triggered one of our actions, or in which users 

seemed to be confused about why a certain action 
happened. Furthermore, active “fiddling” (children quickly 

wiping their fingers across the species-Blocks) very rarely 
caused issues other than multiple feedforward guides 

cluttering the screen, which led to the described 

feedforward designs. Overall, we were satisfied with the 
effectiveness of FlowBlocks regarding both accidental as 

well as uncoordinated touches, as we generally observed 

constructive execution of actions despite intense interference. 

Drag & Drop is Hard to Ignore and Easy to Prevent 

We frequently observed occurrences in which users either 
verbally or physically reacted to another user’s action prior 

to a Block being dropped. We infer from this that users 

were generally aware of each other’s actions, particularly of 
those actions that we intended to require consent. This was 

apparent after some initial play and learning about 
FlowBlocks, children would transition to more constructive 

interaction with the system, and actively prevent other 

participants from executing interfering actions. Our 
observation concurred with existing work in that physical 

strategies are commonly deployed by younger children, such 

as blocking one another’s hands, pushing each other away, or 
covering Blocks or Docks to claim “territory” [16, 22]. 



 

Many Solutions to Affect Awareness and Collaboration 

Throughout our iterations, we tested various parameters of 
FlowBlocks and their effect on mutual awareness. In an 
early version (Fig. 8a&b), both the Docks for Find and 
Relate, as well as the reset slider were visible at all times, 
and placed in the top portion of the display. While this 
created functional overview, we did notice occasions on 
which visitors seemed surprised and unaware of other 
visitors triggering a Find, Relate, or Return (then called 
Reset), and at times uncertain about which function (Find or 
Relate) was currently executing. This was particularly 
apparent in a version in which Find and Relate Docks were 
spatially separated (cf. Fig. b). Several iterations addressed 
this issue. In one design, we tried to first only show the 
Find Dock (then “Jump To”, cf. Fig. 8c), then, after 
selecting and flying to a species, show a Relate Dock (then 
called “Compare With”, cf. Fig. 8d). Consequently, after 
selecting a species for the Find-action, the species is now 
the starting point for a Relate-query. In contrast to the 
previous versions (Fig. 8a & b), this design made sure that 

only the active Docks of one function – Find or Relate – are 
visible at a time, and that both actions are presented in the 
same area on the screen. While this design eliminated the 
described awareness issues, the mechanism of a Dock 
changing its function after it has been originally occupied 
with a Block appeared to be a separate source of confusion. 
Visitors could not anticipate this conditional change when 
making their initial choice, nor did our design visually 
communicate this change of functional meaning (the 
Dock’s label is occluded once occupied by a Block). For 
our exhibit, we dismissed conditionally changing Docks, 
however, they might be suitable for other scenarios. 

An alternative way of addressing the awareness issues 
observed during earlier iterations (Fig. 8a&b), was to utilize 
several of the described mechanisms to increase the 
precursor necessary for each action (Fig. 8e). We place 
virtual walls so that the species Blocks could only be 
dragged out of a small bottleneck at the center. The species 
docks for Find and Relate are hidden in “drawers", and first 
have to be pulled out before being accessible (a form of 
Dock-activation). Additionally, we made the Reset (or 
Return) action accessible via a slider, which when pulled 
out starts to cover the whole screen in a red “curtain”. The 
slider has to be pulled across the whole screen and released 
in order for the Reset action to trigger. 

In a study within one of our iterations in which we 
compared both interfaces (Fig 8a & e), we found the second 
version reduced occurrences of confusion, by introducing 
new constraints that made it harder for a drag to go 
unnoticed. However, it was also less popular for adults, as 
the effort of invoking an action was relatively high. In 
contrast, kids loved this version (cf. “Constraints vs. Play”). 
In our final design, we utilized the described marking menu 
and a positioning of the action dialogs in the center of the 
display (Fig. 7b). This design had three benefits: the 
marking menu added another precursor to an action; 
positioning the the action’s Docks into shared space (as 
advocated by [25]) brought the Docks of an incoming 
action to everyone’s attention; and showing only Docks of a 
single function at a time reduced the confusion observed 
with earlier designs (Fig. 8a & b). The final UI version 
balanced suitability for a large age range with good 
awareness characteristics. 

Constraints vs. Play 

By providing a set of loose movable tokens, FlowBlocks 
inherently lend themselves to playful interaction. We have 
observed various forms of play with the DeepTree UI. 
FlowBlocks originally implemented inertia, so the species 
Blocks could be flicked around the table, causing 
particularly younger kids to “play hockey” (as one of our 
younger visitors called it). Another popular game among 
kids was to drag as many species blocks onto the tree as 
possible. While this form of play seemed enjoyable, it 
distracted from “deeper” engagement, particularly for 
younger audiences. 

 
Figure 8. Selection of discarded  

design iterations of the DeepTree UI. 



 

As the DeepTree is focused on learning, we experimented 
with constraints to “enforce order”, such as disabling 
inertia, introducing the bottleneck (Fig. 8c), and forcing a 
one-at-a-time order for pulling out species Blocks. While 
these modifications reduced levels of play, the overuse of 
such constraints resulted in slow and awkward interaction 
experiences for adults. Likewise, we observed instances in 
which the presence of constraints encouraged an “obstacle 
course” style of play (e.g. routing a Block through the 
mentioned bottleneck). Generally, we feel that certain 
levels of play are inherent to FlowBlocks, which has to be 
considered by the UI designer. In our final design, we tried 
to strike a balance of allowing certain levels of play while 
minimizing their impact on mature participants (see 
“Managing Screen Clutter”). This can enable little kids to 
“participate” alongside more focused and deeper 
interaction. 

Managing Screen Clutter 

One issue we have identified is that Blocks scattering 
around the Display during usage (due to fiddling or directed 
use) can cause significant screen clutter. We have found 
two mechanisms that deal with this issue: first, Blocks that 
are not dropped over a Dock can snap back to their original 
location; secondly, Blocks can be configured to disappear if 
they are not actively touched. In our design, the Blocks 
dragged onto the tree started to slowly fade out when not 
touched, and eventually move back to the reel. This was 
successful in reducing clutter. 

Sequential vs. Parallel Interaction 

As described in the design space, FlowBlocks can be 
configured to enable parallel interaction or to enforce 
sequential execution of actions. While one of the obvious 
strengths of multi-touch technology is its ability to allow 
multiple users to interact at the same time, we have found 
that sequential interaction also has merits. For learning, it is 
preferable for visitors working together rather than working 
side-by-side. At the macro level, the FlowBlocks UI 
enforces a parallel execution of actions in order to create a 
shared context for all participants. However, at the micro-
level, phases of negotiation and simultaneous interaction 
were frequently observed, both verbally, as well as 
facilitated through moving species Blocks close to the 
Docks to signal individual preference for which parameter 
to chose next. We frequently observed turn-based 
interaction, and at occasion a modality of actor and 
observer(s). However, both modes of operating the 
DeepTree were successful in engaging participants in a 
shared learning activity. 

In summary, we found that FlowBlocks, in their current 
design, and with various parameters, can support a variety 
of different designs that allow UI designers to actively 
influence how certain actions are perceived, and enable the 
creation of successful, crowd-friendly UI. 

CONCLUSION 

Although the challenges of crowd interaction are widely 
acknowledged, there are no general UI frameworks or 

design guidelines that can inform the concrete design of 

crowd UIs across a variety of application scenarios. Our 
work starts to fill this gap by providing a general UI, based 

on the drag-and-drop primitive that is custom-tailored to the 
challenges of crowd interaction. Our year-long iterative 

design and evaluation has established the founding qualities 

of FlowBlocks – enabling crowd interaction in the face of 
chaos: its robustness regarding accidental touches and 

interference, its ease of learning and use for a wide 

spectrum of users, and its capability to provide application 
designers with a variety of options to influence mutual 

awareness, and facilitation of conflict management. We 
have also shown that FlowBlocks provide common 

interaction primitives that afford the functional scalability of 

common UI for multi-touch interaction. 

While our insights have confirmed that drag-based widgets 
work well for crowd interaction for the DeepTree museum 
exhibit, further studies are required to understand how best 
FlowBlocks can be extended to support wider application 
scenarios. Theoretically, FlowBlocks can support “desktop-
grade” functionality in crowd interaction settings, given 
their coverage of existing UI primitives. We certainly do 
not envision to port complex applications, such as photo 
editing software, to crowd interaction. We do believe, 
however, that there are many meaningful application 
scenarios that benefit from more complex interaction 
semantics compared to “picture-sharing” type of interaction 
commonly found on surface computer. The DeepTree exhibit 
serves as an example of more complex interaction flow. 

In museum and public contexts, UI composition has 
significant impact on whether visitors have an enjoyable 
social experience in which they acquire knowledge, or 
leave frustrated and confused. Every effort to optimize the 
UI can thus potentially have significant impact on a wide 
range of users. DeepTree will soon be deployed in five 
different museums, with an estimated 4.5 million total 
visitors in the next year. FlowBlocks will serve to enable 
visitors to enjoy a meaningful and playful learning 
experience. 
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