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Abstract The importance of computational thinking (CT) as a goal of science edu-
cation is increasingly acknowledged. The representational affordances of compu-
tational tools are changing the way knowledge can be constructed, expressed, and
understood across disciplines. Our group has worked to explicitly characterize CT
practices used by computational STEM researchers (CT-STEM practices) and to
develop computational science curricula that teach both CT-STEM practices and
science content. We have previously characterized four strands of CT-STEM prac-
tices: data practices, modeling and simulation practices, computational problem-
solving practices, and systems thinking practices. In this chapter, we show that a
group of 9th grade students developed competencies for modeling and simulation
practices as a result of their engagement in our computational biology curriculum.
As evidence, we present findings from a quantitative analysis of students’ written
responses to assessments given before and after their participation in three compu-
tational biology units. Results suggest that the computational biology curriculum
helped students develop a number of important competencies for the strand on mod-
eling and simulation practices. Our work contributes to the field’s understanding of
how science curricula can be designed to foster students’ development of CT-STEM
practices and how this development can be assessed.
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7.1 Introduction

The importance of computational thinking (CT) as a goal of science education
is increasingly acknowledged (Quinn, Schweingruber, & Keller, 2012; Wilensky,
Brady, & Horn, 2014). Teaching CT in the context of science not only presents stu-
dents with a more authentic image of science as it is practiced today, it also increases
access to powerful modes of thinking and marketable skills for many careers (Levy
&Murnane, 2004). It is estimated that by 2020, one out of every two STEM jobs will
be in computing (Kaczmarczyk & Dopplick, 2014). However, students from groups
that have been historically underrepresented in STEM fields (such as women and
racial minorities) are less likely to enroll in computer science (CS) classes (Margo-
lis, 2008;Margolis & Fisher, 2003) and thus are not engaging in CT practices through
traditional channels. Our goal is to improve access for all students, especially those
underrepresented in CS, by embedding CT practices in subjects such as biology,
chemistry, and physics, which all secondary students are expected to take.

We believe that developing CT practices in the context of science subjects is a
productive endeavor. Our group has worked to explicitly characterize key activities
relevant to particular CT-STEM practices as specific learning objectives and used
these to guide our development of science curricula and assessments. In this paper,
we show that a group of 9th grade students (ages 14–15 years) developed compe-
tencies for modeling and simulation practices as a result of their engagement in our
computational biology curriculum.

7.2 Theoretical Orientation

Our perspective on computational thinking is motivated by Wilensky and Papert’s
(2010) restructuration theory, which demonstrates that the representational form in
which knowledge is encoded significantly influences how it may be understood and
learned. Restructuration theory builds on a history of psychological and historical
research that has argued that representational forms shape human knowledge and
understanding, both at the individual and societal level (e.g., Goody, 1977; Papert,
1980; Olson, 1994; diSessa, 2001). In light of this theory, it is clear that the repre-
sentational affordances of computational tools are changing the way knowledge can
be constructed, expressed, and understood across disciplines.

Building on this perspective, our group has worked to characterize the nature of
computational thinking practices in the STEM disciplines. On the basis of interviews
with computational STEM researchers, we developed an operational definition of
CT-STEM as a set of practices and organized these as a taxonomy (Weintrop et al.,
2016). The taxonomy categorizes CT-STEMpractices in terms of four major strands:
data practices, modeling and simulation practices, computational problem-solving
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practices, and systems thinking practices. Figure 7.1 depicts the practices within
each of these four strands.

Though they are not unique to STEM, theseCTpractices are common to theSTEM
disciplines. In this way, they differ from the domain-general CT practices charac-
terized by Wing (2006) (e.g., using computer science concepts to solve problems
and design systems), the National Research Council (2010) (e.g., heuristic reason-
ing, search strategies, and problem abstraction and decomposition), and Brennan
and Resnick (2012) (e.g., being incremental and iterative, testing and debugging,
reusing and remixing, and abstracting and modularizing). We identified key activi-
ties relevant to each of the CT-STEM practices in our taxonomy and proposed those
as learning objectives. We have used these learning objectives to guide our develop-
ment of curricula and assessments that foster and evaluate students’ development of
computational thinking practices in STEM subjects at the secondary level.

In the study described herein, we analyze student gains in the modeling and
simulation practices strand of the taxonomy. We build on work we have done using
agent-based modeling in science classrooms (Blikstein &Wilensky, 2009; Sengupta
&Wilensky, 2009; Horn&Wilensky, 2012; Horn, Brady, Hjorth,Wagh, &Wilensky,
2014; Levy & Wilensky, 2009; Wilensky, 2003; Wilensky & Reisman, 2006). In
future work, we plan to analyze each of the four strands and gains in summative
assessments of CT-STEM practices.

Fig. 7.1 Computational thinking in STEM taxonomy
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7.3 Method

Weshow that a group of 9th grade students developed competencies formodeling and
simulation practices as a result of their engagement in our computational biology
curriculum. As evidence, we present findings from a quantitative analysis of 133
9th grade students’ written responses to assessments given before and after their
participation in three computational biology units.

7.3.1 Study Design

The data in this study come from the fourth iteration of a design-based research cycle
(Collins, Joseph, & Bielaczyc, 2004). The implementation spanned the 2015–2016
school year and was tested in three 9th grade biology classrooms at a partner sec-
ondary school in a Midwestern city in the United States. Students were given a
CT-STEM practices pre-test (Weintrop et al., 2014) at the beginning of the school
year and a CT-STEM practices post-test at the end of the school year. Over the year
they participated in three CT-STEMbiology units; each unit approximately four days
long.We investigated the role of theCT-STEMscience units in students’ development
of competencies for modeling and simulation practices by looking for statistically
significant gains in student scores for particular items from pre- to post-test.

7.3.2 Participants

We partnered with a public secondary school (serving grades 7–12) in an eco-
nomically depressed neighborhood in a large city in the Midwestern region of the
United States. The school was selected for its diversity and for the willingness of
its teachers to participate in our study. The size of the school was typical for an
urban public secondary school, with approximately twelve hundred students enrolled
(71.1% Black/African American, 24.5%Hispanic/Latino, 1.6%Asian, 0.3%Ameri-
can Indian, 0.2% Pacific Islander, 0.9% Bi-Racial, 1.4%White), with 62% from low
incomehouseholds. The school is characterized as selective-enrollment,meaning that
the student population is academically advanced and highlymotivated.We addressed
our research questions by analyzing a selection of the pre- and post-test responses
given by participating 9th grade biology students. A total of 133 of these students,
distributed across three biology teachers, took both tests. Due to time constraints, a
number of these students did not complete the entire assessment. Ten students did
not complete the assessment item measuring our first learning objective and 24 did
not complete the assessment item measuring our second learning objective; these
students’ responses were therefore removed from the analyzed datasets.
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7.3.3 CT-STEM Units

The students participated in three computationally-enriched biology units over the
course of the school year. Each unit took approximately four class periods and empha-
sized the exploration and manipulation of computational models of scientific phe-
nomena or concepts. The first unit was on predator-prey dynamics and ecosystem
stability. For this unit, students explored population dynamics in a simulation of
an ecosystem consisting of three organisms (grass, sheep, and wolves) (Wilensky,
1997b). Students investigated the population-level effects of parameters for indi-
vidual organisms (e.g., reproduction rate) by running the simulation with different
values for each organism. Through their exploration, the students learned about the
complex population dynamics that emerge from the interactions between individual
organisms. The second unit was on HIV. For this unit, students explored a model that
simulated the diffusion of the infectious disease through a population (Wilensky,
1997c). Students investigated the effects of parameters for individual interactions
(such as the probability of individuals to form a couple and the probability of the
disease to transfer between partners) on the rate of the spread of the disease. The
third unit was on genetics. For this unit students explored a model that allowed them
to change mating rules in a population of fish. Students investigated how changing
parameters such as life span and mating choice could bring about changes in the
overall allele frequencies in the population (Novak & Wilensky, 2011).

All units were meant to help students develop expertise regarding learning objec-
tives related to modeling and simulation practices by engaging with science content
through the exploration of NetLogo (Wilensky, 1999) simulations. NetLogo simula-
tions were chosen because the agent-based modeling environments make complex
systems phenomena (such as those featured in the biology units) more intuitively
accessible (Wilensky, 2001). Additionally, the NetLogo user interface makes trans-
parent the relationship between amodel’s code and the phenomenon it simulates. This
makes NetLogo a powerful tool for scaffolding students’ transition from consumers
to designers and builders of computational models.

7.3.4 Data Collection

The pre- and post-test were each given during one 50-min class period at the begin-
ning and end of the school year. Students took the tests individually on school laptops
in their biology classrooms. The pre- and post-tests were not designed to evaluate
students’ science content knowledge. Rather, theyweremeant to evaluate their devel-
opment of competencies relevant to CT-STEM practices. In this chapter, we present
results concerned with two particular learning objectives within our modeling and
simulation practices strand.

The first learning objective focuses on an activity relevant to the CT-STEM prac-
tice using computational models to understand a concept and states that a student
should be able to “explore a model by changing parameters in the interface or code.”
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This is a very basic activity but it plays an important role in students’ (and sci-
entists’) abilities to learn about the relationship between particular parameters and
system behavior at the macro-level.

The second learning objective focuses on an activity relevant to the CT-STEM
practice assessing computational models and states that a student should be able to
“identify the simplificationsmade by amodel.” This activity is important to students’
epistemological development, as it relates to their understanding of a computational
model as a tool that is both powerful and limited with regards to the construction of
new knowledge.

Both pre- and post-tests required students to interact with computational simula-
tions which they were given basic instructions on how to operate. For the pre-test,
students interactedwith a simulation (shown in Fig. 7.2) that modeled climate change
and showed the relationship between temperature and amount of CO2 in the atmo-
sphere (Tinker & Wilensky, 2007). For the post-test, students explored a simulation
(shown in Fig. 7.3) that modeled the relationship between the pressure of a gas, its

Fig. 7.2 Screenshot of pre-test simulation that models the relationship between temperature and
atmospheric CO2 levels
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Fig. 7.3 Screenshot of post-test simulation that models the relationship between the pressure of a
gas, its volume, and the number of particles

volume, and the number of particles in a sealed environment (Wilensky, 1997a, 2003;
Wilensky, Novak, & Levy, 2005).

To assess students’ abilities to explore a model by changing parameters in the
interface or code, we analyzed their responses to test items (quoted below) that
asked them to attend to the relationships between adjustable parameters and system-
level characteristics. To assess students’ abilities to identify simplifications made by
a model, we analyzed their responses to test items (quoted below) that asked them
for the ways in which the simulations differed from the real-world. These assessment
items were selected to investigate students’ development with respect to the same
learning objectives across two very different computationally modeled phenomena.

7.3.5 Analytic Approach

We used a combined top-down (learning objective driven) and bottom-up (data
driven) approach to create rubrics for characterizing students’ competencies with
respect to each learning objective and evaluating their responses to pre- and post-test
questions. Two researchers then analyzed students’ responses to the two assessment
items for both pre-and post-tests. They coded responses (identifying the compe-



106 H. Swanson et al.

tencies outlined in the rubrics) and then scored them. The researchers’ inter-rater
reliability for the pre-test was 97% for the itemmeasuring the first learning objective
and 90% for the itemmeasuring the second learning objective. Inter-rater reliabilities
for the post-test items were 95% and 80% respectively.

7.3.5.1 Learning Objective 1: Explore a Model by Changing
Parameters

For the pre-test, students were asked to explore a model by changing its parameters
in the context of the greenhouse gas simulation. In particular, they responded to the
prompt: “Set cloud coverage to 0%. Take some time to experiment with different set-
tings for the ‘CO2-amount’ slider. What happens to the temperature if you increase
the amount of theCO2 in themodel?” For the post-test, studentswere asked to explore
the model in the context of the gas-law simulation. In particular, they responded to
the question: “What values for container size and number of particles will result
in the lowest pressure in the container? What steps did you take to come up with
these values?” It is important to note that while both items are concerned with stu-
dents’ abilities to learn about a parameter’s influence on a system’s behavior, they are
inversely structured. While the pre-test item instructs students to change a parameter
and report its effect on the system, the post-test item instructs students to change
parameters until they achieve a specified system behavior. We argue that while they
are different, both items are concerned with the causal relationship between param-
eter values and system-level behavior and are therefore comparable assessments of
students’ abilities to explore a model by changing parameters in the interface or
code.

We examined students’ pre- and post-test responses, sorting responses into cate-
gories based on similarities that were relevant to the learning objective. Three cat-
egories emerged that were representative of response types across both pre- and
post-test. These are comparing across trials, attending to explanatory factors, and
attending to parameter-system relationships. We identified these as three competen-
cies relevant to exploring a model by changing parameters in the interface or code.
These competencies are outlined, described, and illustrated with examples from the
data in Table 7.1.

We scored students’ responses by awarding one point for each competence demon-
strated in their response and taking the sum of these points. This resulted in scores
ranging from 0 to 3. We characterize the distribution of competencies (demonstrated
in both pre- and post-test) in our findings section.

7.3.5.2 Learning Objective 2: Identify Simplifications Made by a Model

As part of the pre-test, students were asked to identify the simplifications made by
the greenhouse simulation. As part of the post-test, they were asked to identify the
simplifications made by the gas-law simulation. For both tests, they responded to the
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Table 7.1 Pre- and post-test rubric for analyzing students’ responses and characterizing the com-
petencies they drew upon when exploring a model by changing parameters in the interface or
code

Comparing across trials
Response compares data across multiple simulation trials. When exploring a model to learn more
about the dynamics of, or test a hypothesis regarding, a complex system, it is important to
observe more than one simulation run. This is because complex systems are inherently random
and the results of changing a parameter vary over different simulation trials. A pattern of
cause-effect relationships will hover around an average tendency, but this average tendency may
not be exactly embodied in one (or several) simulation trials. So, if a student only runs one trial,
they may have a misguided impression of a pattern in system behavior. It is also a good idea to
run multiple trials in order to systematically compare the effects of different parameter values on
system behavior.

Pre-test “When I increase the amount of CO2 the earth heats up much faster than it would
if the setting was lower.”

Post-test “To come up with these values I first tried putting the number of particles and the
container size at its max. After that, I tried the number of particles at its minimum
and the container size at its maximum.”

Attending to explanatory factors
Response provides some explanation for the relationship between system parameters and
macro-level patterns. Explanations such as this convey the students’ reasoning and suggest that
they are not only attending to cause and effect, but that they are going one step further and trying
to make sense of the relationship between cause and effect—a fundamental activity of science.

Pre-test “The carbon dioxide blocks the IR from reaching the sky but doesn’t stop the
sunlight from reaching the ground the higher you increase the Carbon Dioxide.”

Post-test “A bigger area and less particles shouldn’t produce a large amount of pressure
since it’s a lot of space for the particles.”

Attending to parameter-system relationships
Response describes relationship between system parameters and macro-level patterns. It is
important to attend to outcomes of the simulation when tinkering with or testing parameters, in
order to notice relationships between cause and effect. Simple qualitative characterizations of the
relationships within a system are a foundation for constructing more detailed or mathematical
relationships. A simple qualitative understanding of a cause-effect relationship can be a powerful
tool for reasoning about system dynamics and for conveying the big ideas about the relationships
within a system to others. In the scientific world, these “others” might be collaborators or
members of the scientific community at-large.

Pre-test “The temperature increases.”

Post-test “I slid the wall-position to its maximum and the number of particles to its
minimum.”

question: “All computational simulations are only approximations of reality. What
are some of the simplifications of this simulation that make it different from the real
world?”

We examined students’ pre- and post-test responses, sorting responses into cat-
egories based on similarities that were relevant to the learning objective we were
analyzing. Five categories emerged that were representative of response types across
both pre- and post-test. These are attending to general issues, attending to rep-
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resentational issues, attending to issues of controllability, attending to issues of
completeness, and attending to procedural limitations. We identified these as five
competencies relevant to identifying simplifications made by a model. These compe-
tencies are arranged in order of increasing sophistication, described and illustrated
with examples from the data in Table 7.2.

General comments about accuracy and representational limitations seemed to be
the easiest to make with attention to mere surface-features. Responses that identified
these simplifications were therefore awarded the lowest score (one point). The com-
pleteness of the model and control given to its various parameters seemed to require
more careful consideration of the interface and comparison with the real-world.
Responses were therefore awarded a slightly higher score (two points) for identi-

Table 7.2 Pre- and post-test rubric for analyzing students’ responses and characterizing the com-
petencies they drew upon when identifying simplifications made by a model

Attending to general issues—score: 1
Response refers to general, rather than specific, inaccuracies or missing factors. This suggests
that students understand that the model is not an accurate depiction of reality, however they have
not done the cognitive work of identifying a particular limitation.

Pre-test “In reality, other factors could come into play rather than just CO2 and clouds.”

Post-test “Inaccuracy in particles and wall position can make it different from the real
world.”

Attending to representational issues—score: 1
Response refers to representational limitations of the model. This suggests that students
understand that the model is not an accurate depiction of reality. This is not a “meaningful”
limitation compared to other limitations that students mentioned, as the simplification does not
influence the interactions between the elements of the model and therefore does not influence the
outcome of any given simulation trial.

Pre-test “Obviously, sunlight is not a bunch of little sticks raining down.”

Post-test “It’s not actually life size.”

Attending to issues of controllability—score: 2
Response refers to the existence of control over factors in the model that one does not have
control over in real life. This suggests that students understand the model is different from reality
because it allows certain conditions to be tested by being varied, which is impossible to do in
reality.

Pre-test “Because you can control how much CO2 and cloud coverage there is.”

Post-test “In real life, you cannot add or subtract molecules nor can you adjust the wall
positioning.”

Attending to issues of completeness—score: 2
Response refers to specific elements or factors that are missing from, or extraneous to, the model.
These students recognize that a model is an approximation of reality. They have compared it with
the real world and identified factors that are found in the real world but missing from the model.
It is probable they believe these factors are somehow important to the model and would change
the outcome of a simulation trial. Limitations such as these are important for scientists to
identify, because they help them interpret their results and recognize their limitations.

(continued)
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Table 7.2 (continued)

Pre-test “There are humans on earth and humans also can add to the amount of heat.”

Post-test “The real world, does not have this many boundaries and an infinite number of
particles.”

Attending to procedural limitations—score: 3
Response refers to interactions, behaviors, or relationships within the model that differ from real
life. Limitations such as this are extremely important for scientists to recognize, as they are
related to how successful the model is at approximating reality. Procedural limitations of the
model influence the outcome of a simulation run in an important way: if the simulation does not
reproduce patterns found in real-world data, something about the encoded theoretical model is
wrong and needs to be revised.

Pre-test “CO2 might not speed up that much when it absorbs IR light.”

Post-test “Particles don’t travel in and out of the room in this simulation, when in real life
they do.”

fying these simplifications. Finally, comments about the procedural correctness of
behavior and interactions within the model required students to run the model and
track cause and effect relationships between elements at themicro-level and compare
this with scientific laws or theories. Responses were therefore awarded the highest
score (three points) for these simplifications. Responses that were not coded for any
of the three competencies were given a score of zero. For our statistical analysis,
we counted the point-value of the highest competence demonstrated in a student’s
response. Scores ranged from0 to 3.We characterize the distribution of competencies
(demonstrated in both pre- and post-test) in our findings section.

7.4 Findings

To test whether the computational biology units played a role in developing compe-
tencies for modeling and simulation practices, pre- and post-test scores for the two
itemswere compared using aWilcoxon signed-rank test and competence frequencies
were compared using McNemar’s tests. We report the results of our analysis below.

7.4.1 Learning Objective 1: Explore a Model by Changing
Parameters

The class average for the pre-test itemmeasuring students’ ability to explore a model
by changing parameters in the interface or code was a score of 1.24. The average
for the post-test item was a score of 1.46. The p-value obtained using a paired
Wilcoxon signed-rank test (with continuity correction) was 0.01389 (V � 1175.5).
The difference in student scores is therefore statistically significant at the 5% level,
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Fig. 7.4 Frequencies of competencies demonstrated in students’ responses to the pre- and post-test
items assessing their mastery of learning objective 1

which supports the claim that engagement in our curriculum helped students improve
with regards to this learning objective. To gain a more nuanced understanding of how
students developed their abilities to explore a model, we compared the frequencies
of competencies they demonstrated in pre- and post-test responses. The bar chart
(Fig. 7.4) illustrates the number of students comparing across trials, attending to
explanatory factors, and attending to parameter-system relationships, on both the
pre- and post-test.

Notably, the frequencies increased from pre- to post-test for comparing across
trials and attending to explanatory factors. Frequencies decreased for attending to
parameter-system relationships. Below, we present results of statistical analyses
that show whether these changes in frequency may have been the result of students’
participation in our computational biology units.

7.4.1.1 Comparing Across Trials

An increase in comparing simulation results across multiple trials suggests stu-
dents have adopted a more systematic approach or learned the value of tinkering in
exploration. An example of a student response that suggests a student is comparing
simulation results across multiple trials is “When I increase the amount of CO2 the
earth heats up much faster than it would if the setting was lower.” A McNemar’s
test on our counts (without continuity correction) results in a test statistic (χ2) of
4.2667 and a p-value of 0.03887, which is a significant effect. This is evidence that
engagement in our computational biology curriculum improved students’ abilities
to explore a model by encouraging more students to compare results across multiple
trials.
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7.4.1.2 Attending to Explanatory Factors

An increase in attending to explanatory factors suggests more students are drawing
inferences from the model visualization to understand the mechanisms that produce
systembehavior.An example of a student response that suggests a student is attending
to explanatory factors is “The carbon dioxide blocks the IR from reaching the sky
but doesn’t stop the sunlight from reaching the ground the higher you increase the
Carbon Dioxide.” A McNemar’s test (with continuity correction) results in a test
statistic (χ2) of 37.961 and a p-value of less than 0.001, which is a significant effect.
This is evidence that engagement in our computational biology curriculum improved
students’ abilities to explore a model by encouraging them to attend to explanatory
factors.

7.4.1.3 Attending to Parameter-System Relationships

A decrease in attending to parameter-system relationships suggests fewer students
are articulating inferences from the model visualization about the macro-level rela-
tionships between parameter settings and system behavior. An example of a student
response that suggests a student is attending to parameter-system relationships is
“The temperature increases,” when the student is asked to describe what happens to
the environment as atmospheric CO2 increases. A McNemar’s test (without conti-
nuity correction) results in a test statistic (χ2) of 27.524 and a p-value of less than
0.001, which is a significant effect. This decrease may be the result of a difference
in the form of pre- and post-test items. While the pre-test item asked students only
what would happen to a macroscopic characteristic of the system as a parameter was
varied, the post-test item asked students for both the parameter value that resulted
in a particular system characteristic and the steps they took to find that value. It is
possible that the additional question caused students to shift their attention away
from answering the question focused on parameter-system relationships.

Our analysis of the pre/post changes in competence frequencies suggests that the
students are improvingwith regard to purposeful exploration of themodel by compar-
ingmore than one simulation trial and attending to explanatory factors. This suggests
they began to look more closely at the model and to understand the interactions at
the micro-level that explained the macro-level phenomenon.

7.4.2 Learning Objective 2: Identify Simplifications Made
by a Model

The class average for the pre-test itemmeasuring students’ ability to identify simplifi-
cations made by a model was a score of 1.39. Their average post-test score was 1.63.
The p-value obtained using theWilcoxon signed-rank test was 0.02 (V� 647.5). The
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difference in student scores is therefore statistically significant (at the 5%significance
level) and this supports our claim that engagement in our curriculum helped students
improve with regards to this learning objective. To gain a more nuanced understand-
ing of how students developed their abilities to identify the simplifications made by
a model, we compared the frequencies of competencies they demonstrated in pre-
and post-test responses. For ease of coding, we combined competencies of the same
score. This is reflected in the bar chart (Fig. 7.5), which illustrates the number of stu-
dents noting general or representational limitations, controllability or completeness
limitations, and procedural limitations, on both pre and post-test.

The frequency decreased from pre- to post-test for attending to general or rep-
resentational limitations and increased from pre- to post-test for both attending to
limitations of controllability or completeness and attending to procedural limitations.
Below, we present results of statistical analyses that show whether these changes in
frequency may have been the result of students’ participation in our computational
biology units.

7.4.2.1 Attending to General or Representational Issues

A decrease in attending to general or representational limitations of the model
suggests fewer students are distracted by surface-level limitations that are inconse-
quential to the model’s ability to simulate reality. An example of a student response
that attends to general or representational limitations is “Obviously, sunlight is not a
bunch of little sticks raining down.” A McNemar’s test (without continuity correc-
tion) results in a test statistic (χ2) of 9 and a p-value of 0.0027, which is a significant
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effect. This is evidence that engagement in our computational biology curriculum
improved students’ abilities to assess a model by encouraging them to pay less atten-
tion to limitations with the model’s surface features.

7.4.2.2 Attending to Limitations of Controllability or Completeness

An increase in attending to limitations of controllability or completeness suggests
students have begun to pay attention to limitations with elements of the model’s
deeper structure. An example of a student response that attends to limitations of
controllability or completeness in a model is “In real life, you cannot add or subtract
molecules nor can you adjust the wall positioning.” AMcNemar’s test on our counts
(without continuity correction) results in a test statistic (χ2) of 15.868 and a p-value
of less than 0.001, which is a significant effect. This is evidence that engagement in
our computational biology curriculum improved students’ abilities to assess a model
by encouraging them to attend to deeper model limitations, such as controllability
and completeness limitations.

7.4.2.3 Attending to Procedural Limitations

An increase in attending to procedural limitations of the model suggests more stu-
dents have begun to pay attention to elements of the model’s deeper structure. An
example of a student response that attends to procedural limitations is “CO2 might
not speed up that much when it absorbs IR light.” A McNemar’s test (without con-
tinuity correction) results in a test statistic (χ2) of 0.42857 and a p-value of 0.5127,
which is not a significant effect. Though we do see an increase in the number of
students enacting this practice, there is not enough evidence to say that engagement
in our computational biology curriculum improved students’ abilities to assess the
procedural limitations of a computational model.

Our analysis of the pre/post changes in competence frequencies suggests that
students developed expertise in assessing a model by shifting their attention from
limitations with the surface features of the model to limitations with elements of its
deeper structure. More specifically, students shifted from identifying general lim-
itations or limitations with the visual representation to limitations with a model’s
controllability and completeness.

7.5 Discussion

We have presented findings from a quantitative analysis of 133 9th grade students’
written responses to assessments given before and after their participation in three
computational biology units. Our results suggest that our curriculum helped students
develop a number of important competencies for exploring a model by changing
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parameters in the interface or code, such as comparing simulation results acrossmul-
tiple trials and moving beyond merely describing relationships between a parameter
and systembehavior, to attending to explanatory factors in themodel.Our results also
suggest that students developed important competencies for identifying simplifica-
tions made by a model, such as shifting attention from general and representational
limitations with the model to deeper limitations such as model completeness and
controllability. While our results are encouraging, we can’t rule out the possibility
that limitations of our experimental design (such as asymmetries between pre- and
post-test items discussed earlier) may have influenced our findings.

Ourwork is concernedwith characterizing students’ engagement in computational
thinking practices in their secondary science classrooms. It is therefore in conversa-
tion with scholarship on the nature of computational thinking and the nature of com-
putational thinking in STEM. Previously, we created a taxonomy of computational
thinking practices used by experts in computational STEM disciplines. The findings
presented here provide insight into how students can develop expertisewith respect to
modeling and simulation practices by characterizing, at a fine grain-size, the compe-
tencies students draw uponwhen exploring amodel by changing its parameters in the
interface or code and identifying simplifications made by a model. Our research pro-
gram continues to uncover the space of competencies relevant to CT-STEMpractices
representing all strands of our taxonomy and investigate how these competencies can
be developed through engagement with our computationally-enriched science cur-
riculum. In future work, we aim to connect our quantitative treatment with qualitative
analysis of student utterances, NetLogo log files, and work.

While the units investigated by this study featuredNetLogo, other CT-STEMunits
(which have been created as part of a larger curricular design effort) feature modeling
environments such asMolecularWorkbench (Concord Consortium, 2010) and PhET
(Perkins et al., 2006). Other units introduce students to computational tools for data
analysis and problem solving, such as CoDAP (Finzer, 2016). Exposing students to
a diverse range of computational tools is meant to help them develop a flexible set
of CT-STEM practices.

In addition to understanding how our curriculum can support students’ devel-
opment of CT-STEM practices, our research aims to understand how engagement
in these practices can support students’ science content learning. Research already
points to the productivity of computational tools for science learning (Guzdial, 1994;
National Research Council, 2011; Redish & Wilson, 1993; Repenning, Webb, &
Ioannidou, 2010; Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013; Sherin, 2001;
Taub, Armoni, Bagno, & Ben-Ari, 2015; Wilensky & Reisman, 2006). As described
by restructuration theory, the representational form of knowledge influences how it
can be understood. The advance of computational tools has afforded representations
that have had profound influence on the way scientists understand phenomena. We
argue that these same tools can also be employed in science learning tomake complex
content more accessible to students, while at the same time broadening engagement
with computational thinking.
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