

TunePad: Computational Thinking
Through Sound Composition

Abstract
Computational thinking skills will be important for the
next generation of students. However, there is a
disparity in the populations joining the field. Integrating
computational thinking into artistic fields has shown to
increase participation in computer science. In this
paper, we present our initial design prototype for
TunePad, a sound composition tablet application
controlled by a block-based programming environment.
TunePad is designed to introduce learners to
computational thinking and to prepare them for text-
based coding environments. From our preliminary
testing, with children ages 7-14, we observed that our
design actively engages learners and communicates
how the programming blocks control the sounds being
played. This testing is a prelude to more formal studies
as we continue to improve the design and interface of
TunePad. With this work, we intend to engage students
in computational thinking who may not have otherwise
been exposed, giving the opportunity to more people to
enter the computer science field.

Author Keywords
Computational thinking; music composition; broadening
participation; CS education; STEAM;

ACM Classification Keywords
H.5.2 [User Interfaces]: User-Centered Design; K.3.2
[Computer and Information Science Education]:

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

IDC '17, June 27-30, 2017, Stanford, CA, USA

© 2017 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-4921-5/17/06.

http://dx.doi.org/10.1145/3078072.3084313

Jamie Gorson
Computer Science and Learning
Sciences
Northwestern University
Evanston, IL, 60208 USA
jgorson@u.northwestern.edu

Nikita Patel
Computer Science
Northwestern University
Evanston, IL, 60208 USA
nikitapatel@u.northwestern.edu

Elham Beheshti
Computer Science
Northwestern University
Evanston, IL, 60208 USA
beheshti@u.northwestern.edu

Brian Magerko
Digital Media Program
Georgia Institute of Technology
Atlanta, GA 30332 USA
magerko@gatech.edu

Michael Horn
Computer Science
Northwestern University
Evanston, IL, 60208 USA
michael-horn@northwestern.edu

Computer Science Education; J.5 [Arts and
Humanities]: Music;

Introduction
Computational thinking skills are becoming increasingly
important for the next generation [13]. However, large
disparities remain in populations pursuing computer
science, in part because many students are turned off
by the image portrayed by the field [4]. One promising
approach to address this disparity has been STEAM
(Science, Technology, Engineering, Arts, Mathematics),
the integration of the arts into technology-focused
fields like computing [9]. STEAM blends topics
perceived as “rigid and logical-mathematical” with
disciplines seen as more “creative” and broadly
appealing [7].

One example of the STEAM based approach is
EarSketch, an online learning environment that
integrates computer programming with electronic music
composition. With EarSketch, learners from both
minority and majority populations have shown
significant increases in content knowledge, along with
positive attitudinal shifts towards computing [6].
EarSketch lets students remix professionally produced
audio samples with authentic programming languages
(Python or JavaScript). However, EarSketch’s
curriculum and text-based programming environment
are targeted at students in high school and may be
intimidating and difficult for younger learners.

Building on EarSketch, we are designing and testing a
sound composition app called TunePad. Our goal is to
provide a playful introduction to computational thinking
in places like community centers, libraries, schools, and
homes. Learners manipulate a visual interface

consisting of colorful nodes that generate sounds. Users
can program these nodes with a visual programming
environment based on the Blockly framework [5]. The
application is ideally easy enough for young learners to
pick up in informal, unguided contexts, but rich enough
to help them transition to more sophisticated
environments over time. With TunePad, we hope to
broaden participation in computing.

Our overarching research questions are (1) how can we
best design a learning environment that engages
novices in computational thinking around music
composition and (2) how do we strike a balance
between playful, informal learning while also preparing
learners for transferring to a more instruction-based
learning environment such as EarSketch?

In this paper, we describe our prototype design and
present findings from our preliminary testing with 26
children. From these sessions, we found that our design
was engaging for learners. Our participants, many of
whom had prior experience with block-based
programming, understood how TunePad programming
blocks connected to nodes. We still have open
questions about how to help users learn computational
theory through our coding blocks without sacrificing the
playful and exploratory nature of the experience.

Background
Many researchers have studied environments to help
children learn computational thinking concepts and
change their attitudes towards computer science
[3,4,11]. The STEAM approach has been promising in
its ability to improve personal motivation and increase
learner engagement [7]. For example, Buechly et al.
showed that using e-textiles to create wearables was

Figure 1: Screenshot of the
TunePad prototype.

Figure 2: Nodes, generator and
particle on the TunePad
prototype.

an engaging and rich vehicle for teaching computational
thinking to children [3]. STEAM has also been applied
to music composition, integrating music with STEM
fields [1,2,6]. This strategy takes advantage of pre-
existing communities and interests. These studies
found that learners engage in STEM, and specifically
computing, when it’s integrated into the learner’s
existing activities. We hope to follow this strategy by
engaging learners who are already drawn to music
while introducing them to computational thinking.

Prototype Design
TunePad (Figure 2) is comprised of nodes (colored
dots), generators (black dot) and particles (small grey
dots), which enable learners to create sound. In
TunePad, learners can experiment by placing nodes on
the screen and observing the resulting sounds created
when particles hit the nodes. We were inspired by an
existing music app called NodeBeat, in which users
create combinations of pitches and sounds to rapidly
produce musical rhythms [12].TunePad is distinct from
NodeBeat because by using block code, learners can
tinker with a node’s actions. The generator sends a
particle to every node at regular intervals. When a
particle hits a node, the learner now determines which
sounds are created and if new particles are sent from
nodes by writing the reaction function.

Users program the reaction function (Figure 3) using
our custom-made block-based programming language
created with the Blockly framework [5]. The method of
programming is based on the object-oriented
programing model. This means that the code is
organized around objects instead of actions. In our
implementation, the code is oriented around the node
that is hit. Nodes are assigned a number based on their

order added to the board, allowing users to identify and
target individual nodes. Reaction functions are written
for each color of node, meaning all nodes of the same
color execute identical code.

There are 12 different programming blocks in the
prototype (Figure 4). The first three are the containers
for each reaction function and colored to match their
respective nodes. The middle five, all navy blue, are
the command blocks. The ‘for each’ block allows users
to access all the nodes on the board. The conditionals
afford the user control over where to send particles
based on color or distance. This gives the user more
creative ability and teaches them about if statements.
The play block is what makes the sounds. The send dot
block creates a particle from the first input to the
second input, teaching participants about calling
functions with parameters. The last three blocks, all
yellow, are how users identify nodes. The first is a
variable to be used with the ‘for each’ block. The ‘this
node’ block calls the node that was hit by the particle.
The final block has a dropdown where users can pick an
individual node to reference by its number.

The text on each block was written so that a complete
function could be read and comprehended with natural
language, yet formatted in a way that correlates to
programming syntax. This way, a user could easily
understand the blocks and also learn computing
concepts.

To help children learn the fundamental ideas of
troubleshooting and debugging, we have begun to
incorporate error messages into the program. For
example, if a user accumulates too many particles on
the board by creating an infinite loop, the user will

Figure 3: Example of a reaction
function.

Figure 4: Custom-made blocks
for TunePad.

receive a notification that the song exploded. When this
happens, all the particles are erased on the board
leaving the code and nodes the same, forcing the user
to correct their work to avoid another explosion.

Prototype Testing
We tested our prototype with 14 children, ages 7–14, in
an after-school music school in a major Midwest city.
We asked children to use the tablet in groups of two or
three. Two of the participants used the application
alone. Each group was monitored by a researcher who
helped and observed the group. We tested on two
separate days with different children each time. On the
first day, we provided a printed example of a working
program for the students to replicate, and then
encouraged each group to experiment freely. On the
second day, we provided the learners with a printed set
of step-by-step instructions to teach them how to
create a working program. At the end of each session,
the researcher asked the children for feedback on their
experience with the application.

Additionally, we tested the prototype with 12 children,
ages 10-14, during a workshop in a STEAM-based
college-prep program. We asked the children to use the
prototype in groups of three for 7 minutes. The
students were encouraged to explore on their own, with
minimal instruction from the researcher, who only
stepped in to help when a child demonstrated signs of
lost interest or asked for assistance. After finishing
interacting with the app, researchers asked the
participants for feedback.

Preliminary Findings and Discussion
Engagement

Almost all participants expressed interest in using
TunePad beyond the allocated study time and most
were physically and vocally enthusiastic while using the
app. Many groups, after making an arrangement of
nodes and blocks, watched their results with big smiles
on their faces. Some of the groups increased the
number of particles so much that the sound got very
loud. One participant put his hands up to his ears and
commented “Ahh! It’s horrible again!” referring to the
explosion of noise. This dislike encouraged him to edit
the code to improve his composition. We expected
learners to spend around 10 minutes playing with the
app, but most groups interacted for around 30 minutes,
even after researchers asked if they wanted to stop.
Some children didn’t want to leave and asked how they
could play it at home.

Understanding Programming Controls Nodes
The groups showed a compelling understanding of how
manipulating the programming blocks controlled the
nodes on the screen. They would move the blocks and
look for changes in the particles and sounds. While they
were almost always able to reproduce the examples
given, they were not able to fully explain each line of
code. Students seemed to understand the mapping
between a pattern of code blocks and a desired result,
but struggled to create new patterns. The groups varied
drastically in age and prior coding experiences,
resulting in a range of the complexity of their
compositions and their understanding of the
computational concepts.

Intuitiveness of Block-based Programming
Many of our participants had previously exposure to
block-based programming, so they easily understood
the interaction. What we found least intuitive about

Figure 5: A function block and a
command block.

using the blocks for musical programming was
indicating which blocks needed to be inside a function.
The command blocks have indents on the top and a
carrot on the bottom to imply that blocks go before and
after, while the function blocks have the indent on the
inside, so users put blocks on the inside (Figure 5).
Several participants put the command blocks on the
workspace without putting them into a function block
and expected it to have an effect. Since reaction
functions run when a node is hit, these independent
blocks will never execute. We hoped the Blockly
notation would discourage this, but it was not apparent
to the participants.

Comprehension and Interest Without Instruction
At the second site, the groups were not given direction
on how to use the app, yet all but one of the groups
were able to create a composition. While these students
struggled slightly more than those given direction, they
figured out how to use the application to create sound.
Their interest level in the application remained high
until they couldn’t understand an individual coding
block or became confused.

Future Work
Develop In-App Directions
We are still very unsure how to best introduce TunePad
in a way that helps children learn computational
thinking without sacrificing the playful and exploratory
nature of the application. While we tried prototypes of
two methods in the preliminary testing, we still have
limited understanding. In further testing we hope to
formatively test different models of instruction.

Improving Functionality

We want to build upon the current functionality of the
application, giving users more control over the sounds
and adding more computational thinking elements. For
example, nodes could be chosen by properties of their
number, like evens and odds and sounds could be
played in different instruments or octaves. Increasing
the possible variables allows for the integration of more
computational theory, like Boolean logic. With more
complexity, we would need a method for revealing tools
slowly to not overwhelm the learner.

Tangibles
We are also interested in studying the effects of adding
physical manipulatives (tangibles) to the digital
interface. Research has shown that physical
manipulatives can support mathematics learning [6] or
can increase engagement [8]. These tangibles could be
as simple as print-at-home representations of the
nodes, ensuring that the addition of tangibles wouldn’t
decrease the accessibility of the application.

Conclusion
We presented the initial prototype design of TunePad, a
sound composition app that introduces computational
thinking skills to middle-school aged learners. Although
we have only conducted preliminary testing, we found
that TunePad is engaging, making it a potential
platform for introducing learners to computational
thinking skills. The continuation of this work and future
studies will help inform designers using STEAM
approaches and create a new pathway for children to
computer science. TunePad has shown to attract music
students to computational thinking and we hope it will
help attract a broader population to computing fields.

Acknowledgements
We thank our participants and Anna Xambo for help
with this study. We thank the National Science
Foundation for their support of this project (DRL-
1612619). Any opinions, findings and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

References
1. Samuel Aaron and Alan F. Blackwell. 2013. From

sonic Pi to overtone: creative musical experiences
with domain-specific and functional languages. In
Proceedings of the first ACM SIGPLAN workshop on
Functional art, music, modeling & design, 35–46.

2. Jeanne Bamberger. 2003. Music as embodied
mathematics: A study of a mutually informing
affinity. International Journal of Computers for
Mathematical Learning 8, 2: 123–160.

3. Leah Buechley, Mike Eisenberg, Jaime Catchen, and
Ali Crockett. 2008. The LilyPad Arduino: using
computational textiles to investigate engagement,
aesthetics, and diversity in computer science
education. In Proceedings of the SIGCHI conference
on Human factors in computing systems, 423–432.
Retrieved March 7, 2017 from
http://dl.acm.org/citation.cfm?id=1357123

4. Jamika D. Burge and Tiki L. Suarez. 2005.
Preliminary analysis of factors affecting women and
African Americans in the computing sciences. In
Proceedings of the 2005 conference on Diversity in
computing, 53–56. Retrieved March 12, 2017 from
http://dl.acm.org/citation.cfm?id=1095265

5. N. Fraser. 2013. Blockly: A visual programming
editor. Published. Google, Place.

6. Jason Freeman, Brian Magerko, Tom McKlin, Mike
Reilly, Justin Permar, Cameron Summers, and Eric
Fruchter. 2014. Engaging Underrepresented Groups
in High School Introductory Computing Through
Computational Remixing with EarSketch. In
Proceedings of the 45th ACM Technical Symposium
on Computer Science Education (SIGCSE ’14), 85–
90. https://doi.org/10.1145/2538862.2538906

7. Danah Henriksen. 2014. Full STEAM Ahead:
Creativity in Excellent STEM Teaching Practices.
STEAM 1, 2: 1–9.
https://doi.org/10.5642/steam.20140102.15

8. Michael S. Horn, Erin Treacy Solovey, R. Jordan
Crouser, and Robert JK Jacob. 2009. Comparing the
use of tangible and graphical programming
languages for informal science education. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 975–984. Retrieved
October 27, 2016 from
http://dl.acm.org/citation.cfm?id=1518851

9. John Maeda. 2013. STEM + Art = STEAM. STEAM 1,
1: 1–3. https://doi.org/10.5642/steam.201301.34

10.Taylor Martin and Daniel L. Schwartz. 2005.
Physically distributed learning: Adapting and
reinterpreting physical environments in the
development of fraction concepts. Cognitive science
29, 4: 587–625.

11.Andrés Monroy-Hernández and Mitchel Resnick.
2008. Empowering Kids to Create and Share
Programmable Media. interactions 15, 2: 50.
https://doi.org/10.1145/1340961.1340974

12.S. Sandler and J. Windl. 2013. NodeBeat. app for
iOS. Blackberry, Android, and Windows.

13.David Weintrop, Elham Beheshti, Michael Horn, Kai
Orton, Kemi Jona, Laura Trouille, and Uri Wilensky.
2016. Defining Computational Thinking for

Mathematics and Science Classrooms. Journal of
Science Education and Technology 25, 1: 127–147.
https://doi.org/10.1007/s10956-015-9581-5

