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1.  Introduction 

Seymour Papert’s book, ​Mindstorms: Children, Computers, and Powerful Ideas ​(1980)​,​ featured 

a startling photograph for the time—a large dome-like robot, a floor turtle, that could be 

programmed by children to draw geometric forms on paper sheets. This was Logo. Not just the 

turtle on the screen that spread throughout the world on the floppy disks of the 1980s, but a 

physical-digital hybrid system, an embodied configuration of metal, glass, plastic, and bits. The 

spirit of physicality in Logo, and many other educational languages of the time (see Kelleher & 

Pausch, 2003), became mostly metaphorical—the turtle moved in the physical space of a virtual 

world of abstracted geometry. But, metaphor though it was, the creators of these languages saw 

physicality as an essential link between children’s embodied experiences in the world and the 

new universe of computer code. 

This chapter is about ​tangibility​ in Computer Science Education. And, even though the 

term “tangible” didn’t gain widespread use in Human-Computer Interaction until the turn of this 

century, the history of computing education is clearly anchored in tangible roots that have grown 

and blossomed over the last thirty years. We see these roots in early educational programming 

language paradigms. diSessa and Abelson spoke of “spatial metaphor” and “naive realism” in 

their design of Boxer (diSessa & Abelson, 1986); Papert evoked the concept of “body syntonic​” 

reasoning ​ ​in children’s use of Logo (1980); and, with Karel the Robot (1981), Richard Pattis 

sought to introduce Computer Science to learners in terms of navigating a grid world. We see 

other echos of tangibility in the panoply of visual programming languages that rely heavily on 
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physical and spatial metaphors to represent concepts such as encapsulation, scope, 

flow-of-control, and syntax (Repenning, 1993; Erwin, Cyr, & Rogers, 2000; diSessa & Abelson, 

1986; Resnick et al., 2009; Kelleher & Pausch, 2005). And, remarkably, as the 1970s, 

researchers were thinking about physical computer ​languages​ that they imagined could open 

the door to programming for children who were still learning how to read and write (see 

McNerney, 2004). In all of this work was the democratizing idea that anyone, regardless of age 

or background, could engage in computational literacy (diSessa, 2000) experiences. Tangibility, 

whether real or metaphorical, was central to this vision. We’ll talk a little about this history in this 

chapter, but our main focus will be on why​ ​tangible computing matters now and how we see it 

shaping the future landscape of computing education. The chapter will touch on physical 

computing and robotics, but our main emphasis will be on the use of tangible technologies to 

support computer programming in and with the physical world. We express cautious optimism 

about this future. Despite the progress we’ve made, it’s clear that tangible computing as an 

educational endeavor is still very much in its infancy. This field has potential to invite a diverse 

new generation into computing and to advance ​ ​computer science education, but there is still 

work to be done to fully realize this vision. 

2. A Brief History Of Tangible Computing Education 

In the years leading up to the turn of the century, the physicality of computing education 

experienced something of a resurgence through both technological advances as well as the 

sustained efforts of researchers to advance human interaction with computers beyond the 

computer screen and into the real world. Ishii and Ullmer (1997) coined the term “tangible” to 

describe a class of computer interfaces that employ physical objects and surfaces as a means 

to both manipulate and represent digital information. Their use of the term was meant to capture 

the idea that much of the richness of human interaction with the physical world through the use 



of tools has been replaced by uniform interaction with narrow bandwidth input devices such as 

mice, keyboards, and touchscreens. They were also considering a much older history of 

computation anchored in physical materials (such as the Abacus). The incorporation of a variety 

of physical objects and multi-sensory feedback was seen as a way to recapture some of this 

richness to ​humanize ​ human-computer interaction. Later definitions such as Dourish’s notion of 

embodied interaction ​(Dourish, 2001) and Hornecker and Buur’s (2006) ​tangible interaction 

emphasized the degree to which interactive systems could be meaningfully embedded in 

physical, social, and cultural contexts. In this sense, tangibility became less about the physical 

nature of the interface and more about the idea that interaction with digital systems could be 

entangled within material and social realities beyond that of an individual sitting in front of a 

computer screen. All of these ideas have roots in the ​ubiquitous computing ​ movement of the 

late 1980s and early 1990s that imagined a world in which machines would increasingly 

conform to human dimensions, capabilities, and activity structures rather than the other way 

around (Weiser, Gold, & Brown, 1999).  

Perhaps not surprisingly, much of the research involving tangible interaction has 

emphasized education and learning (Shaer & Hornecker, 2010; O'Malley & Fraser, 2004; Bers, 

2008). For example, the work of Resnick and collaborators at the MIT Media Lab is notable for 

its focus on ​digital manipulatives​, computationally enhanced versions of traditional children’s 

toys that created new opportunities for learners to engage with complex concepts. For example, 

Digital Beads (Resnick et al., 1998) allowed children to create simple programs in a language of 

one-dimensional cellular automata by stringing together small capsules with embedded LEDs 

that could transmit, absorb, or destroy light passed from adjacent beads. The System Blocks 

project (Zuckerman, Arida, & Resnick, 2005) provided a similar interface for simulating dynamic 

systems. Wooden blocks with embedded electronics expressed behaviors of complex systems, 



such as stocks, flows, and feedback loops. The work of this group also helped to open physical 

computing and robotics to a broader (and younger) audience. Their LEGO/Logo project made it 

possible for children to write computer programs to control animated LEGO constructions 

incorporating sensors and motors (Resnick, Ocko, Papert, 1988). This work was followed by 

other influential projects like LEGO Mindstorms and the MIT Cricket (Resnick et al, 1998; see 

also Blikstein, 2013). Blikstein’s review of physical computing kits (2013) describes four waves 

of innovation in physical computing education, starting with systems such as LEGO/Logo 

(Resnick, Ocko, & Papert, 1988) in the 1980s and leading to systems such as the Arduino 

(Mellis, Banzi, Cuartielles, & Igoe, 2007), PICO Cricket (Rusk et al., 2008), Cubelets 

(Schweikardt & Gross, 2006), and the LilyPad Arduino (Buechley & Eisenberg, 2008).  

In addition to physical computing systems programmed with graphical or text-based 

languages, researchers have also explored the idea that computer code itself can be 

represented using physical objects. With a text-based language, programmers use words like 

BEGIN, IF, and REPEAT to instruct a computer. This code must be written according to strict, 

and often frustrating, syntactic rules. With a visual or graphical language (see Chapter 3.2 and 

3.10), words are replaced by pictures, and programs are expressed by arranging and 

connecting icons on the computer screen. Syntactic rules can be conveyed to the programmer 

through a rich set of visual queues based on cultural and diagrammatic conventions. Visual 

languages can be less intimidating for beginners and have become popular in educational 

settings (Chapter 3.2). Tangible languages go a step further. Instead of relying on pictures and 

words on a computer screen, tangible languages use physical objects in the real world to 

represent various programming elements, data abstractions, and flow-of-control structures. 

Users manipulate, arrange, and connect these physical elements to construct runnable 

programs. Rather than relying on implied rules and spatial metaphors, and user interface 



conventions, tangible languages can exploit the physical properties of objects such as size, 

shape, and material to express and enforce syntax. 

Researchers began exploring the idea of tangible languages as early as the the 1970’s. 

Radia Perlman, then a researcher at the MIT Logo Lab, believed that the syntax rules of 

text-based computer languages represented a serious barrier to learning for young children. To 

address this issue she developed an interface called Slot Machines (see McNerney, 2004) that 

allowed young children to insert cards representing various Logo commands into three colored 

racks, which in turn represented subroutines.  

Almost two decades later projects such as Suzuki and Kato’s AlgoBlocks (Suzuki & 

Kato, 1995) began to revisit these ideas. Since that time, a wide variety of tangible languages 

have been developed and explored, including projects that blend movement and action and 

physical space with digital programming (Fernaeus & Tholander, 2006; Sherman et al., 2001), 

robots that are also embodied algorithmic structures (Schweikardt & Gross, 2006; Wyeth, 2008), 

the incorporation of found or crafted materials into algorithmic expressions (Smith & Kotzé, 

2010), and the integration of physical activity and play with programming (Smith, 2007). 

Increasingly, tangible languages are making their way out of research labs and into the public 

sphere in the form of offerings such as museum exhibits, educational tools, and commercial 

products (Horn, Crouser, & Bers, 2012; Hu, Zekelman, Horn, & Judd, 2015; Sullivan, Bers, & 

Mihm, 2017) . As these ideas have gained a commercial foothold, research have started to 1

consider the learning affordances of tangible vs screen-based interfaces (Pugnali et al, 2017; 

Sullivan & Bers, 2017; Strawhacker, & Bers, 2015; Horn et al., 2012; Strawhacker, et al 2013).  

In this chapter, we broadly classify tangible languages into three categories: smart block 

languages, demonstration languages, and externally compiled languages. 

1 See also: ​https://www.primotoys.com/​, ​https://www.bee-bot.us/bluebot.html ​, 
https://www.playosmo.com/en/coding/  



Smart Block Languages: ​Smart block programming languages feature interlocking 

physical blocks that can be stacked or connected to form a program. In all cases, the blocks 

themselves contain electronic components or microprocessors, which, when connected, form 

structures that are more than just abstract representations of algorithms; they form working, 

specialized computers that can execute code through the sequential interaction of the blocks. 

Their physical structures embody both the program and the means for its execution. For 

example, McNerney’s Tangible Computation Bricks (2004) embedded Cricket microprocessors 

into LEGO bricks that could be stacked to form physical algorithmic structures. The bricks also 

accepted a single parameter card that could interchangeably be a constant, a timer, a sensor, or 

some user-adjustable value. Along similar lines, Wyeth (2008) created a smart block language 

for younger children (ages four to eight) also using stackable LEGO-like blocks to describe 

simple programs. This language consisted of sensor blocks, logic blocks, and action blocks for 

generating light, sound, and motion. Schweikard and Gross (2006) developed a distributed 

construction kit system consisting of interlocking cubes that encouraged users to combine 

sensors, logic elements, and actuators, exposing them to a variety of advanced concepts 

including kinematics, feedback and distributed control. 

Tangible Demonstration Languages:​ A second class of tangible language allows 

users to program physical systems or environments by demonstrating a set of rules or actions 

that can be kinetic, audible, or digital. The computer then repeats these steps to act out a 

program. Researchers at the University of Maryland have explored approaches for controlling 

ubiquitous computing environments for storytelling (Sherman et al, 2001).​ ​Working with children, 

the researchers developed and evaluated demonstration-based programming systems called 

StoryKits. Using a “magic wand,” young children (ages four to six) were able to program the 

various props and physical icons that made up their story worlds. In a slightly different direction, 



Frei, Su, Mikhak, and Ishii designed an educational toy called Curlybot (Frei, Su, Mikhak, & Ishii, 

2000) that could record and play back its motion on a flat surface. Children could program the 

robot by dragging the robot to demonstrate motion. Taking this idea of kinetic memory further, 

Raffle, Parkes, and Ishii created Topobo (2004), a system that allows children to construct 

imaginative creatures composed of passive and active building components. The active 

components have the ability to record and playback physical motion, helping children learn 

about animal movement and their own bodies in the process.  

Externally Compiled Languages:​ Unlike smart block languages, programs created with 

a externally compiled tangible language are only symbolic representations of actual 

algorithms—much in the way that Java or C++ programs are only collections of text files. An 

additional piece of technology (a compiler or interpreter), must be used to translate the abstract 

representations of the program into a machine language that will be executed on some 

computer system. Ideally, the tangible elements of a compiled language contain little or no 

electronic components, affording the language designers more freedom in the choice of objects 

and materials to work with. For instance, paper or flat cards with attached RFID tags become 

realistic options. Early examples of such languages come from Horn and colleagues with 

projects like Quetzal and Tern (Horn & Jacob, 2007). These languages use passive tangible 

objects encoded with computer vision fiducials that allow a camera to translate blocks into 

working programs. Researchers at the DevTech research group at Tufts University, developed 

KIBO  (Bers, 2018a; Sullivan, Bers, & Mihm, 2017), a robot that can be programmed with 

wooden blocks with barcodes. Children assemble the robot by incorporating its sensors, motors 

and art platforms, and then utilize the embedded barcode scanner to compile their programs, 

block by block, creating a direct link between the robot and the program it executes. Newer 

systems have made use of augmented reality and video-based object tracking (Hu et al., 2015) 



to combine some of the real-time interaction of smart block languages with the practical 

advantages of passive tangible objects. 

Each of the three classifications of tangible languages: smart block languages, 

demonstration languages, and externally compiled languages, present their own challenges and 

affordances and can better serve different populations of learners with their own unique needs 

and developmental capabilities. 

3. Why Tangibility Matters (Four Themes) 

Given the history and accelerating interest in tangible and physical computing for education, a 

reasonable question to ask is why it all matters? Creating tangible materials comes with 

associated costs that simply aren’t a factor for pure software systems. While software can be 

deployed online, physical materials have to be designed, manufactured, and distributed. These 

costs will decrease given advances in 3D printing, homemade electronics, and the increasing 

availability of makerspaces, but it is still worth asking what we gain from tangibility that makes 

added costs worthwhile? A tempting answer is that physicality confers a certain degree of 

cognitive leverage in learning situations, especially for younger children. Variants of this 

argument, usually anchored in notions of sensorimotor engagement with the material world, 

have been around for decades . For example, research based on ​conceptual metaphor theory 2

(Lakoff & Johnson, 2008) has argued that learning experiences that make use of physical 

properties of materials, movement through space, and relationships between objects and 

people might more successfully reference sensorimotor schema that form the foundation for 

much of abstract thought (e.g. Hurtienne & Israel, 2007; Macaranas et al., 2012). While we 

agree that it is appealing to consider cognitive benefits of tangibles for learning, here we 

propose four other broad themes that have perhaps received less attention in the literature but 

2 Literature on manipulative materials in early mathematics education is an interesting case that has had 
mixed results (see Uttal, D. H., Scudder, K. V., & DeLoache, J. S., 1997) 



nonetheless illustrate what we see as important future directions of tangibility in CS Education 

research. These themes have to do with broadening the access to and appeal of computational 

literacy experiences, in part by making them more universal and visible. For each theme, we 

highlight example projects that illustrate the potential of tangibles in the future of CS education. 

3.1 Theme 1: Early Childhood Learning  

The world of early childhood education often privileges children’s engagement in rich 

sensorimotor experiences with both the natural world and physical materials, while remaining 

cautious about “exposure” to digital media and screen time (American Academy of Pediatrics, 

2016). In this context, the development of programming languages that make it possible for 

children to code with objects such as wooden blocks, tiles, beads, or even craft materials, has 

helped reimagine computational thinking as a developmentally appropriate activity that can be 

integrated with other classroom experiences in a natural way (Bers, 2008; Bers, 2018a; Bers & 

Horn, 2009). Using programming and robotics systems, children can program, debug, and play 

with concepts like sequences, patterns, logic, loops, sensors, and actuators, often without ever 

interacting with screen-based media (Figure 22.1 and 22.2). 

 

Figure 22.1 ​A prototype tangible programming language based on computer vision technology. 

Image credit Felix Hu. 



One of the earliest examples is KIBO, a robotics and tangible programming kit for 

children ages 4-7 years old. KIBO started as a research project at the DevTech research group 

at Tufts University and became a commercially available product in 2014 (Bers, 2018a). ​KIBO 

lets children build their own robots, decorate them with art supplies, and program them, without 

requiring PCs, tablets, or smartphones. To program their robotic creations, children put together 

sequences of instructions (programs) using the wooden KIBO blocks that they can then scan 

with a barcode reader built into the body of the robot (see Figure 22.2). ​The language syntax in 

KIBO (i.e. a sequential connection of blocks) is designed to support and reinforce sequencing 

skills in young children (Bers, 2018a; Horn, Crouser, & Bers, 2012). 

 

Figure 22.2 ​ KIBO robot and its blocks. Reproduced with permission from Bers (2018b). 

  



Research with KIBO in early childhood classrooms has shown that children, as young as 

pre-school, were able to create sequential programs as well as more sophisticated algorithms 

that utilize control structures with number and sensor parameters (Sullivan & Bers, 2015; 

Sullivan & Bers, 2017). Research also shows statistically significant improvement of 

kindergarten children in sequencing skills, which are predictors of later numeracy and literacy 

(Kazakoff & Bers2012).  

Beyond classrooms, researchers are using similar approaches to introduce foundational 

computational literacy experiences for young children through culturally relevant artifacts. For 

example, Horn et al. (2013) explored the use of coding “stickers” embedded in a children’s 

storybook as a way to engage parents and children together in playful computer programming 

activities. The technology combined a paper storybook with computer programming activities 

that children complete by adhering stickers to the pages of the book. The programs then 

controlled an interactive digital character that appeared on the screen of a smartphone or tablet 

computer. The researchers argued that children’s storybooks are a powerful ​cultural form​ of 

literacy that support subtle but powerful parent-child reading practices that scaffold parental 

involvement in children’s early ​computational ​ literacy activities. 

The designers of these and similar systems are intentionally shaping materials to better 

speak the language of early childhood. In this context, educators can start to blend 

computational artifacts within a broader child-driven inquiry model. Tangible materials and 

technologies will continue to create opportunities to support learning with younger children, 

enabling designers to think about what emerging computational literacy might look like. 

However, the accelerated availability of commercial products claiming that they can engage 

young children in learning about computer science, while most of them only provide a limited 

“playpen” as opposed to an open-ended “playground” (Bers, 2018a; Bers, 2012) might invite 



researchers and policy makers to examine what are the minimal design features of such 

environments to claim that they support learning the sequential, algorithmic, and problem skills 

associated with programming, as well as afford expressiveness of ideas through projects that 

are personally meaningful to children. 

3.2 Theme 2: Appealing to a Broader Audience 

The inability of CS education to attract and retain diverse learner participation, both in schools 

and beyond, is a persistent and discouraging trend that has been taken up multiple times in this 

book already (Chapters 3.5, 3.13). It is possible that we are now at a turning point with new and 

more inclusive learning environments and programs that are connecting with learners from 

backgrounds previously underrepresented in computer science and related fields. However, the 

weight of evidence from post-secondary degree programs suggests that we still have much 

work to do (Zweben & Bizot, 2016). One of the most appealing aspects of tangible computing is 

its potential to connect with a broader audience, representing a more diverse range of cultural 

traditions, practices, and value systems.  

In the realm of physical computing, projects like LilyPad Arduino (Buechley & Eisenberg, 

2008; Searle et al., 2014; Kafai et al., 2014) and e-textiles are using innovative designs to 

integrate computational and electronic materials with craft traditions such as sewing, 

scrapbooking, drawing, music, and fashion. Such craft traditions have rich cultural roots 

characterized by multigenerational communities of practice. The transformation here, although 

perhaps not fully realized, is subtle. It’s not that computation is being superficially dressed up in 

new clothes so as to become more palatable to a diverse audience; rather, these toolkits and 

materials are ideally appropriated by existing communities as a new medium of expression, 

grounded in evolving communities and practices. These new systems help illustrate the 



potential relevance of CS Education in a much broader array of activities and endeavors 

(including craft traditions, music, dance, fashion, visual arts, storytelling, and so on).  

Another example of this potential comes from the work of Horn and colleagues on a 

tangible programming and robotics exhibit that was installed at the Museum of Science, Boston. 

The exhibit allowed visitors to control the movement of a robot on a platform by constructing 

programs from chains of wooden blocks shaped like jigsaw puzzle pieces. Compared to a 

version of the exhibit in which visitors used a computer mouse to program in the same robot, 

children (and girls in particular) were significantly more likely to try the exhibit in the tangible 

condition (Horn et al., 2012). And, although visitors created similar programs in the two 

conditions, they were also more likely to engage in collaborative exploration with other family 

members in the tangible condition.  

Tangible approaches have also shown potential for children with a range of cognitive 

and physical abilities. KIBO was used with children with Autism spectrum disorder and 

preliminary results from a pilot study in Panama show that children were not only able to 

successfully program their robots and understand their code in order to debug it, but also 

engage in social interactions through the activity of arranging blocks in a sequence 

(Albo-Canals, et al, in press). Other researchers have explored affordances of tangible 

programming languages for children with visual impairments (Thieme et al., 2017).  

3.3 Theme 3: Increasing the Visibility of Digital Artifacts in Learning Spaces 

Robotics activities in educational settings are characterized by the creative chaos of building, 

testing, failure, rebuilding, and refining. Children move back and forth between programming 

stations (such as laptop computers) where they build and refine simple computer programs that 

provide the logical glue between sensors (touch, light, etc.) and actuators (motors, sounds, 

lights). One wonderful aspect of this kind of work is that robots and the construction process 



have a physical presence that is highly visible. But this visibility also highlights the relatively little 

attention that software (the programs that students construct to control the robots) receives 

compared to hardware. The robots are colorful, physical creatures that come alive with light, 

sounds, and motion. Computer code, on the other hand, often lives a transient and anonymous 

life on a computer display. It’s much harder to see, it gets covered up by other windows of digital 

content, and it is often forgotten altogether. After the lights turn off and the children go home, 

the robots are often still displayed in the classroom, while the code that made the robots run is 

nowhere to be seen. This can happen across a variety of CS education activities, including 

animation, graphics, video games, e-textiles, and robotics competitions. In the landscape of 

computational artifacts, code can become a forgotten, second-class citizen. 

 One appealing aspect of tangible programming languages is that they give “code” a 

persistent, physical life in the learning space. Code has the potential to become a structure that 

can be literally held on to as a robot executes its program, and something that is persistently 

visible and available for the same level of tinkering, refinement, and debugging as the robot 

itself. This tangibility also facilitates debugging in a social context. Children can see what 

doesn’t work, and they can help fix it. Depending on the system, the programs might take a 

variety of forms: stickers on a piece of paper, interlocking wooden blocks, magnetic tiles on a 

whiteboard, or even Lego bricks that piggyback on the robot itself. The added visibility of code 

might bring attention to previously neglected properties and concepts such as elegance, the 

importance of debugging, and testing for edge cases and other unusual situations. In other 

words, code has the potential to become an object of conversation and attention in a way that it 

might not have been before. 



3.4 Theme 4: Beyond toys and games 

Although we see much promise in tangible computing, most of the existing work focuses on 

younger children, with relatively less attention directed towards older learners. The reasons are 

varied. The push away from predominantly screen-based media is a move that resonates with 

early childhood education, and for young children with developing literacy and fine motor skills, 

physical materials offer an appealing and perhaps more accessible entry point into 

computational literacy. However, another reason has to do with current technical limitations of 

tangible interfaces and their fit for more advanced educational, professional, and real-world 

settings. While touch-sensitive devices and computer displays have made tremendous strides in 

the past 20 years, tangible interfaces still predominantly rely on computer vision techniques or 

embedded electronic components. Computer vision suffers from usability problems when a 

camera can’t clearly see target objects. On the other hand, objects with embedded electronics 

are relatively difficult and expensive to manufacture and depend on pieces having power and 

electrical connections. This contrasts with the needs of even moderately sophisticated visual 

languages that provide learners with dozens of distinct programming elements that must be 

organized through a menu system. Saving and restoring programs is also difficult, at least with 

today’s technology because physical structures are hard to automatically rebuild. For the same 

reasons, the clipboard functions (e.g. copy, cut, paste, and delete) of text-based and visual 

programming languages would be difficult to implement with most tangible languages, making 

programming tedious for more advanced programmers who want to quickly copy and modify 

existing pieces of code. 

Along with these barriers is the perception that ​real ​coding is done in text-based 

languages, preferably on editors with dark background and candy-colored syntax highlighting. 

This perception has shifted as visual languages have grown in popularity and now appear in 



high school and even college-level curricula. But, there is still a dominant view that the authentic 

programming of engineers and other practitioners is done in text.  

And yet, even with this laundry list of limitations, technology will continue to advance, 

making the tedious, flaky, or impossible of today much more appealing, practical, and reliable 

tomorrow. As an obvious example, dramatic improvements in augmented reality will open many 

new possibilities for learners to collaboratively build and debug programs created with low-cost 

and generic physical objects. These advancements will expand the role for tangible 

programming languages in the areas of education and non-professional programming 

situations, and not just for younger children, or even children at all.  

One obvious area for innovation is in end-user programming systems. In the age of 

smart technology (smart homes, smart thermostats, smart cars, the Internet of Things, and 

ecosystems of connected devices), the opportunities and need for end-user-programming 

environments will proliferate (see Myers, Ko, & Burnett, 2006; Blackwell & Hague, 2001). While 

the control of an individual device may be limited to simple configurations of input options and 

settings (“when it’s after 8pm on a Wednesday, turn the heat down by 10 degrees”), in an 

increasingly ubiquitous world, the complexity of simple interconnected devices will multiply. This 

complexity will manifest itself in multiple spheres, including (and perhaps especially) in social 

spheres that play out between family members, coworkers, neighbors, and citizens. The ability 

for end users to write programs, even programs consisting of simple interdependent conditions 

and outcomes, might be necessary to manage the myriad unanticipated situations that arise 

when such systems are deployed on a large scale. As we’re seeing in the current debate 

around the role of algorithms in society (see Mittelstadt et al., 2016), we need to think carefully 

about issues of power and accessibility when it comes to end-user programming systems. While 

the algorithms that control social media news feeds impact millions of users, end user 



programming might intersect with the social dynamics of a family, school, or workspace. This 

“programming” might look quite different from languages used in introductory computer science 

classes, but there are also certainly rich opportunities for computational thinking. For example, 

imagine a family argument over conflicting rules given to a programmable thermostat. How are 

these rules resolved by the system, and what rules ​should ​take precedent to make family 

members happy and comfortable? More to the point, who has the power to make decisions on 

behalf of the family and how visible are these decisions? Family members might have different 

opinions about temperature and time settings (when is bedtime, and how much should we 

adjust the temperature?). But, going beyond the case of household heating and cooling 

systems, there are many examples of potential end-user programming systems that we could 

imagine becoming tangible. Beyond smart homes, there are many other domains where 

tangible programming might make sense in professional and creative settings. For example, 

musicians, DJs, and visual performance artists often write live code (see Blackwell, McLean, 

Noble, & Rohrhuber, 2014 for an extensive overview) that becomes an integral part of the 

performance itself. We’ve already seen tangible systems in this space (e.g. Xambó, 2017) and 

the area seems ripe for exploration.  

4. Conclusion 

Advancements in technology will continue to drive new forms of human interaction with 

computational systems. With these changes will come new opportunities for Computer Science 

education to reach broader audiences and engage learners in new ways. In the past several 

years we have already seen the outpouring of new tangible programming products marketed to 

young children and their parents. There are a wealth of research opportunities in this space as 

well as a need for thoughtful reflection and study on understanding both the benefits and 

limitations of tangible technologies. In this chapter we have reviewed four potential themes that 



suggest the relevance of tangible computing for the CS Education Research community: 

thinking about CS education in early childhood, reaching and engaging more diverse learners, 

increasing the visibility of computer code in educational practice, and engaging broader 

audiences beyond traditional education settings. This is not an exhaustive list, but it hints at the 

broad array of research questions yet to be addressed. 
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