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Abstract: In this study, we investigate museum visitor learning and engagement at an interactive

visualization of an evolutionary tree of life consisting of over 70,000 species. The study was

conducted at two natural history museums where visitors collaboratively explored the tree of

life using direct touch gestures on a multi-touch tabletop display. In the study, 247 youth, aged

8–15 years, were randomly assigned in pairs to one of four conditions. In two of the conditions,

pairs of youth interacted with different versions of the tree of life tabletop exhibit for a fixed

duration of 10minutes. In a third condition, pairs watched a 10minute video on a similar topic.

Individual responses on a 53-item exit interview were then compared to responses from a fourth,

baseline condition. Contrasting with the baseline condition, visitors who interacted with the tabletop

exhibits were significantly more likely to reason correctly about core evolutionary concepts,

particularly common descent and shared ancestry. They were also more likely to correctly interpret

phylogenetic tree diagrams. To investigate the factors influencing these learning outcomes, we used

linear mixed models to analyze measures of dyads’ verbal engagement and physical interaction

with the exhibit. These models indicated that, while our verbal and physical measures were related,

they accounted for significant portions of the variance on their own, independent of youth age,

prior knowledge, and parental background. Our results provide evidence that multi-touch interactive

exhibits that enable visitors to explore large scientific datasets can provide engaging and effective

learning opportunities. # 2016 Wiley Periodicals, Inc. J Res Sci Teach
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The nature of scientific research has undergone a profound shift in recent decades. More than

ever, scientists pursue lines of research that rely on massive data sets and computational methods

of inquiry (Foster, 2006). As an example relevant to this paper, researchers around the globe are
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engaged in an ambitious effort to assemble the evolutionary relationships of millions of species

into a unified tree of life (Cracraft & Donoghue, 2004). These transformational changes in the

nature of scientific inquiry raise important questions about the nature of learning experiences

provided by natural history museums, science centers, and other informal science institutions.

Specifically, can computational tools and large datasets be used to create unique and meaningful

learning experiences for visitors?And, can brief engagementswith such learning experiences lead

to improved understanding of complex science concepts such as evolution?

To address these questions, we investigated visitor learning at a natural history museum

exhibit designed to convey concepts of evolution and biodiversity. The exhibit presents an

evolutionary tree of life consisting of over 70,000 species that visitors explore using a deep zoom

interaction interface on a multi-touch tabletop display. Visitors can move from the origins of life

3.5 billion years ago to present-day species representing a diversity of life on the planet (Figure 1).

To develop this exhibit we combined several large scientific datasets and created a novel

visualization technique (Block et al., 2012a).

Our exhibit design was informed by research on learning in museums and other informal

environments (Crowley et al., 2001; Falk & Dierking, 2000). Researchers have previously

identifieddesign factors that promoteactive prolonged engagement (APE)with interactive exhibit

elements in science museums (Humphrey & Gutwill, 2005). Prototypical APE exhibits support

open-ended exploration, self-driven discovery, and collaborative engagement. From this

perspective, social interaction is seen as critical to learning, and effective exhibits must be

intentionally designed to foster collaborationwhile limiting confusion and disruption.

Large interactive displays such as multi-touch tabletops are popular in museums and other

public spaces (Antle, Tanenbaum, Seaborn, Bevans, &Wang, 2011; Horn et al., 2012; Hinrichs &

Carpendale, 2011; Hinrichs, Schmidt, & Carpendale, 2008; Hornecker, 2008; Snibbe & Raffle,

2009). These displays have made it possible for visitors to “touch” and explore visualizations of

large scientific data sets (e.g., Hinrichs et al., 2008; Louw & Crowley, 2013; Ma, Liao, Ma, &

Frazier, 2012; Roberts, Lyons, Cafaro, & Eydt, 2014). Despite these opportunities, however,

supporting intuitive interaction for multiple users that goes beyond superficial levels of

engagement is still deceptively challenging (Block, Wigdor, Phillips, Horn, & Shen 2012b;

Hinrichs & Carpendale, 2011; Hornecker, 2008). Large multi-touch displays invite simultaneous

use by multiple visitors, but they also invite confusion, conflict, and interference as visitors work

Figure 1. Screenshot from DeepTree (left). A dyad interacting with DeepTree on a multitouch tabletop display at a
natural history museum (right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.
com].
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at cross purposes without the guidance of established interaction techniques and social norms.

And, while design frameworks have been proposed to promote social interaction and playful

exploration (e.g., Block et al., 2012b; Snibbe & Raffle, 2009), few existing studies have

demonstrated learning gains with tabletops or other large displays in museums especially around

difficult topics like evolution. This study adds to the existing literature and makes three main

contributions: First, we demonstrate through a controlled study with 247 museum visitors that

people can learn complex science concepts from an interactive visualization of a large scientific

dataset. Second, we contribute to an understanding of how social engagement can contribute to

learning in informal environments. In particular, we use linear mixed models to understand the

effect of several measures of verbal engagement and physical interaction on individual youth

learning outcomes. Finally, our results provide insight into how to help learners make sense of

large scientific datasets by buildingon their intuitive conceptual frameworks.

Evolution and the Tree of Life

Evolution is a central organizing principle for all of the life sciences. However, broad public

understanding of evolutionary concepts remains elusive (Banet & Ayuso, 2003; Bishop &

Anderson, 1990; Evans, 2001, 2013). Conveying concepts of evolution to museum visitors is

especially challenging (Diamond & Evans, 2007; Diamond & Scotchmoor, 2006) due to short

engagement times, difficulties of conveying complex, dynamic processes with static representa-

tions (Wilensky & Reisman, 2006), and widespread resistance to the idea of evolution among the

general public in the United States (Gallup, 2014; Miller, Scott, & Okamoto, 2006). Even among

natural history museum visitors, only about a third of adults grasp evolutionary concepts (Evans

et al., 2010; MacFadden et al., 2007). Previous research has demonstrated that evolution exhibits

withmultiple components can be effective for learning (Spiegel et al., 2012; Tare, French, Frazier,

Diamond, & Evans, 2011), especially if they are embedded in a meaningful narrative (Evans,

Weiss, Lane, & Palmquist, 2015). A challenge in this project was to achieve learning through

interactions with a visualization of a large scientific dataset. Museums have made use of video to

convey some of the dynamic aspects of evolution (e.g. Prum, 2008). However, while video can be

engaging and informative, visitors have limited control over the scope andflowof information.

Building on Visitors’ Intuitive Understandings of Evolution

Given the challenges of conveying evolution in museums, one promising direction has been

to offer learning experiences that appeal to or clarify visitors’ intuitive or everyday reasoning.

Prior research suggests that some intuitive concepts hinder understanding (Evans, Rosengren,

Lane, & Price, 2012), while others may serve as a foundation for more sophisticated

understandings (Evans et al., 2010; Legare, Lane,&Evans, 2013).

The idea that there can be dramatic changes in species over time runs counter to children’s

intuitive “essentialist” beliefs in the stability and immutability of kinds (Gelman&Rhodes, 2012;

Samarapungavan & Wiers, 1997). Young children, in particular, are likely to argue that species

remain unchanged over time or to use anthropomorphic (intentional) reasoning, stating that

organisms want to change (Evans, 2000, 2001, 2013). By the middle elementary-school years,

however, children often adopt restricted teleological explanations of species change. That is, they

endorse the idea that organisms need to change in order to survive in a particular environment,

while simultaneously rejecting anthropomorphic mechanisms of change. This developmental

shift could potentially scaffold more scientifically accurate understandings by increasing

children’s receptivity to mechanisms of change that do not involve the intentions of individual

organisms (Evans et al., 2012, 2015). Supportive evidence for this argument is found in studies

conducted in museums among children, youth, and adults (Evans et al., 2010; Legare et al., 2013;
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Spiegel et al., 2012). In these studies, restricted teleological reasoning (e.g., “the first fungus

needed to be protected from the second fungus”) was positively correlated with an understanding

of natural selection. On the other hand, anthropomorphic reasoning, the idea that adaptive change

is intentionally caused (e.g., “[the finches] had to try and work harder, probably, to develop their

beaks”),was uncorrelated or negatively correlated, depending on themeasure.

Other studies have shown that the phylogenetic tree diagrams used to communicate

macroevolutionary ideas can invite confusion. Phylogenetic trees are core representations in

the life sciences and are used by biologists to derive lineages of species according to the

characteristics that they share with a most recent common ancestor (Baum, Smith, & Donovan,

2005). Despite their importance, however, prior research has shown that tree diagrams are difficult

for novices to understand even at the college level (MacDonald & Wiley, 2012; Meir, Perry,

Herron,&Kingsolver, 2007; Novick&Catley, 2013; Phillips, Novick, Catley,&Funk, 2012). For

example, high school and college students have more difficulty interpreting the relationships

between species when their intuitive beliefs conflict with the information depicted (Novick,

Catley, & Funk, 2011). Further, the results of a recent qualitative study revealed that high school

students have considerable difficulty reasoning about the ancestors that humans share with other

species even when these relationships are depicted diagrammatically (Seoh, Subramaniam, &

Hoh, 2015).

One of the goals of this study was to help visitors make sense of phylogenetic trees by

exploring relationships among diverse species. The notion of “relatedness” was therefore an

important consideration for the study. Relatedness is a fundamental concept for understanding

tree diagrams (Catley, Phillips, & Novick, 2013); however, it can elicit both intuitive (family

relationships) and more expert (tree of life) reasoning. Our interactive tree of life frames the core

idea that all living things on earth are related, with the aim of clarifying and reinforcing visitors’

intuitive concepts. Furthermore, by providing evidence of common ancestry, the tree of life

counters the essentialist notion that each living kind has a unique essence, an acknowledged

barrier to understanding common descent (Evans, 2000; Gelman & Rhodes, 2012; Shtulman &

Schulz, 2008).

Study Overview

In this study, we were interested in the effect of our tabletop exhibit on visitor learning in

natural history museums. We were also interested in how elements of verbal engagement and

physical interaction at the exhibit might contribute to learning outcomes. Evidence suggests that

both social and physical engagement play an important role in learning in museums (Crowley

et al., 2001; Eberbach & Crowley, 2005; Falk & Dierking, 2000), but we know less about how

they shape learning with computer-based exhibits, particularly those involving visualizations of

large scientific data sets. To investigate these factors we recruited youth dyads, aged 8–15 years, at

two natural history museums to participate in one of four conditions. In the first two conditions,

dyads interacted with different versions of our tree of life exhibit on a tabletop display for a fixed

period of 10minutes. In the third condition, dyads watched a 10minute video about evolution

and the tree of life that addressed topics that were similar to the tabletop conditions. Because it

was produced independently, the video used language and visual representations that were not

directly comparable to the tabletop exhibits. We included the video as a condition in the

study because it exemplifies media commonly used by museums to help visitors understand

evolution (MacDonald&Wiley, 2012).

We subsequently administered a 53-item exit interview to each participant individually and

compared the results to those of participants from a baseline control condition. We also collected

video recordings of dyad conversation and computer logs of touch interaction.With this designwe
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hoped to examine differences in visitor learning between the experimental and baseline

conditions.We also hoped to understand howmeasures of dyads’ verbal engagement and physical

interaction in the tabletop conditions contributed to learning outcomes.

Learning Objectives

Our exhibit design and assessments were guided by learning objectives related to macro- and

micro-level evolution concepts. The macro-level concepts reflect increasingly deeper levels of

understanding of the tree of life, especially the concept that all living things are related and that

evidence for these relationships is based on shared ancestral traits. Additionally, we hoped to

improve visitors’ ability to interpret phylogenetic tree diagrams. The micro-level concepts

emphasize evolutionary processes that act on populations over time, resulting in the tree of life and

including inheritance, variation, adaptation, and natural selection. Finally, we hoped to instill a

sense of wonder at the complexity and diversity of life on earth.While our learning objectives and

measures concern concepts of evolution, we believe that our findings have the potential to inform

the design of other learning experiences involving the collaborative exploration of large scientific

data sets.

Research Questions and Predictions

The current study was guided by the following two research questions. RQ1: What are the

effects of exhibit condition (tabletop and video) and age on youth understanding of evolution?

RQ2: How do elements of verbal engagement and physical interaction with the tabletop display

contribute to learning outcomes? We predicted that compared to the baseline condition, both

tabletop conditions would elicit a better understanding of evolutionary concepts. We expected

that the video condition would also result in learning gains. However, we also hypothesized that

youth would interact with one another less often while watching the video, and that this, coupled

with the self-directed engagement of the tabletop conditions, might lead to differential learning

outcomes in favor of the tabletop exhibits.

Method

Participants

In total, 251 youth participated in the study (MeanAge¼ 11.55 years; SD¼ 1.69). In all cases

dyads were siblings or friends recruited from the same family group. Four youth were excluded

from the analyses, three because they did not complete the exit interview, and one because of a

recruiting error. The remaining 120 girls and 127 boys identified as 72% Caucasian, 11% Asian

American, 5% Latin American, 4% African American, 4% Mexican American, 2% Indian, 2%

Puerto Rican, and less than 1% Arabic and Native American. Dyads were randomly assigned to

one of four conditions (see Table 1). For the purpose of analysis we defined two age groups

by median split: 8–11 years (M¼ 9.99; SD¼ 0.86) and 12–15 years (M¼ 12.87; SD¼ 0.90). We

selected these age groups because previous research has indicated that 8–11-year olds are

beginning to grasp the concept of evolutionary relationships, while older children are exposed to

these ideas in school (Evans, 2013). The mean age for each age group did not differ significantly

by condition.

Previous research has demonstrated that background factors such as age, education, and

religious beliefs are likely to influence visitor understanding of evolution and responsiveness to

exhibits (Evans et al., 2010; Tare et al., 2011). We controlled for these factors by randomly

assigning participants to condition and also by measuring them so that they could be statistically

controlled if necessary. Parents (N¼ 231) completed a questionnaire covering demographic
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information including: parental educational level; parental views of religion and evolution, such

as beliefs about evolutionary origins (from Spiegel et al., 2012); and characteristics of the youth

participants, such as the child’s knowledge of evolution. There were no significant differences by

museum site (ps> 0.05) or by condition (ps> 0.05) for these measures, with one exception for

parents of children in thevideo condition, which did not bear on our research questions (see Suppl.

Table S1 for details of themeasures by condition).

Materials

This study used two interactive tabletop applications called DeepTree and FloTree. We

developed these applications through an iterative process of design and evaluation with a team of

computer scientists, learning scientists, biologists, andmuseumcurators (Block et al., 2012a).

DeepTree.DeepTree is an interactivevisualization of the tree of life showing the phylogenetic

relationships of 70,000 species. The design has three major components (Figures 1 and 2). The

main display area allows visitors to zoom and pan through the entire tree of life. The tree uses a

fractal layout algorithm so that branches emerge as the user zooms in. Unlike static depictions of

trees that simplify information by limiting the number of species, the fractal design allows for

the depiction of many thousands of species while reducing visual complexity. The second

component is a scrolling image reel along the right side of the screen containing a subset of

200 species representing important evolutionary groups. When an image is held, the table

highlights the specie’s location in the tree and automatically flies toward it. The final component is

a relate feature that allows visitors to compare any two species in the image reel. When activated,

the system flies to the common ancestor of the two species. Visitors can then open a second screen

that shows a simplified “training” tree depicting the time of divergence and major evolutionary

landmarks for the two species (Figure 2). These landmark points can be activated to reveal further

information about common ancestors andmajor shared traits.

FloTree. FloTree is an interactive visualization of a simulated population of organisms that

changes over time in response to geographic separation and natural selection. When launched,

visitors see colorful dots representing organisms that emerge from the bottom of the screen and

repeatedly “produce” new lines of dots that steadily grow upward. Visitors can place their hands

on the table to introduce virtual environmental barriers that split the population of dots into

subgroups (Figure 3). If the hands remain in place long enough, the color patterns diverge into two

newpopulationswith distinctive characteristics (“species”). After each simulation run, the pattern

Table 1

Site, age, and gender of participants by condition (DeepTree I, DeepTree II, video, and baseline)

Condition DeepTree I DeepTree II Video Baseline Total

Total 59 62 63 63 247
Site

Museum 1 29 32 31 32 124
Museum 2 30 30 32 31 123

Age
8–11 years 28 28 29 28 113
12–15 years 31 34 34 35 134

Gender
Female 33 31 32 31 127
Male 26 31 31 32 120
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of diverging dotsmerges into solid branches of a tree. Expandable information bubbles explain the

visualization in accessible language.

Video.We also included a third condition in which participants watched a video,Discovering

the Great Tree of Life. This video was produced by the Peabody Museum of Natural History

(Prum, 2008) andwas chosen for its high production quality and the evolutionary topics it covered.

Video exhibits are also common in natural history museums and are used to explain core

evolutionary concepts. The video addressed all of our content-related learning objectives and

featured animations, voiceovers, and interviews with prominent evolutionary biologists. The

video also included a dynamic visualization of a tree of life and a segment visualizing howchanges

in a population of organisms (i.e., rabbits) can result in speciation. While it was not our primary

objective to compare the video and the tabletop conditions directly because they differed

Figure 2. Screen shot of the training tree from the DeepTree exhibit. The left side of the screen shows a simplified
“training tree” with important evolutionary landmarks highlighted. The right side of the screen shows information about
the two species selected and their time of divergence. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com].

Figure 3. Screenshot from the FloTree interactive (left) and a dyad interactingwith FloTree at anatural historymuseum
(right). [Color figure can beviewed in the online issue,which is available atwileyonlinelibrary.com].
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significantly in presentation, we do report instances in which there were significant differences in

visitor engagement or learning outcomes.

Exit Interview. We conducted a 15–20minute audio-recorded interview with 53 open- and

closed-ended questions to assess youths’ understanding of microevolution and macroevolution

concepts (see Supplementary Materials). Youth were interviewed individually without access to

outside resources. For closed-ended questions, youth were trained to use five-point Likert scales

(with faces representing each choice).Most of the interview itemswere developed specifically for

this study. The natural selection questions were based on measures developed in prior research

(Evans et al., 2010; Legare et al., 2013; Spiegel et al., 2012). Other measures were adapted from

prior research on tree-reasoning ability (Novick, Catley, & Funk, 2010, 2011), evolutionary

relatedness (Phillips,Novick,&Catley, 2011), and common ancestry (Poling&Evans, 2004).

Procedure

We recruited participants at two natural history museums, the Harvard Museum of Natural

History (HMNH) and the Field Museum, Chicago. HMNH serves around 240,000 visitors

annually, while the Field Museum serves over 1.2 million visitors annually. Our exhibit was

installed in a hall of vertebrate paleontology at Harvard and near the entrance to the evolution hall

in the Field Museum. At each site we recruited groups of visitors as they came into the vicinity of

our exhibit. To be eligible to participate, visitor groups had to consist of at least one parent or

guardian and at least two youth in the target age range of 8–15 years old. After obtaining informed

consent, dyadswere randomly assigned to one of the four conditions described below.Dyadswere

given a $15 gift for participating.

Conditions. In the first experimental condition (DeepTree I), youth dyads engaged in an

unscripted exploration of the DeepTree for 4minutes, followed by a forced transition to the

FloTree application for 4minutes, and concluded with an exploration of DeepTree for an

additional 2.5minutes. The exhibit software controlled the transitions between the DeepTree

and FloTree. After the first 4minutes of interaction, the software disabled the interface and

prompted participants to press an Experiment button that launched the FloTree. A similar

transition guided visitors back to the DeepTree for the final 2.5minutes. In the second

experimental condition (DeepTree II), youth dyads engaged in a 10.5minute unscripted

exploration of the DeepTree only. In both DeepTree conditions, if participants had not used the

relate function after the first 90 seconds of interaction, theywere prompted to do so by the exhibit.

In the third experimental condition (Video), dyads watched the 10.5minute video, Discovering

the Great Tree of Life. The timing of the intervention was dictated by the video length, typical of

museum settings. In the baseline condition, participants completed the exit interview before

gaining access to the exhibit.

Exit Interview: Coding Open-Ended Responses and Constructing Measures

Participants’ open-ended explanations provided critical information about their understand-

ing of evolutionary concepts. Responses to 10 open-ended questions in the exit interview

were evaluated with codes (see Table 2) based on systems used in prior research (Catley et al.,

2013; Evans et al., 2010; Novick & Catley, 2012). Newly emergent codes were also included as

needed. Two researchers achieved 96.7% agreement when coding a total of 14,586 responses

(k¼ 0.681).Weused threemain coding systems, eachwith a unique set of codes:Biological terms

(11 codes) were linguistic codes assigned when the youth used the same or a closely associated

term. The other coding systems were based on the concept, not necessarily the use of the correct

term. Informed reasoning (8 codes) captured a relativelywell-informed, but inmost cases far from
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expert answer (Evans et al., 2010). For example, Taxonomic Relationships included statements

that referenced valid biological groupings (e.g., “Because dolphins are mammals. . . they are in

the same category, meaning that they will be closely related”). In contrast, Intuitive reasoning

(9 codes) captured visitors’ everyday reasoning, particularly anthropomorphic or teleological

concepts. For example, Need-Based Reasoning included statements about the needs of organisms

(e.g., “Because each of them had their own specific need to live in a different environment. . .”).
Terms and concepts used rarely (1% or less) or considered peripheral to the main study questions

were excluded from further analyses.

Individual codes were scored as 0 (absent) or 1 (used at least once). For example, if a youth

mentioned Relate several times in response to a single question, theywould be assigned a score of

1 for Relate for that question. For each question, youth responses were scored on a 0–1 scale for

each of the 28 codes, which were then averaged across all 10 questions. We combined and

averaged subsets of these codes to create measures of evolutionary reasoning. Table 2 shows only

those codes used in the measures while Supplementary Table S2 shows the complete coding

system.A summary of the interviewprotocol is also provided in supplementalmaterials.

Tree of life measures. To assess tree of life reasoning we constructed measures of participant

use of Tree Terms (Terms: Ancestry, Branches, Relate) and Tree Concepts (Concepts: Branching

Table 2

Open-ended codes used to construct measures of evolution understanding

Biological Terms Example
Adaptation “It’s the one that has more chance of survival. . . that makes evolution and

adaptation.”
Ancestry “A long time ago, they were common ancestors to us.”
Branches “I would tell them that every species splits and branches.”
Genes “. . . maybe because that they have the same, a couple of the same genes.”
Relate “A tree of how everyone relates.”
Separate “. . . everything got separated, and they all went in their different directions”
Time “It’s how creatures changed over time.” And “the act of evolving over time.”

Informed
Reasoning

Example

Branching patterns “I would say it’s probably about evolution, going off to the different branches of
human race and animals.”

Common descent “. . . humans, gorillas, orangutans, and chimpanzees evolved from these same type
of ape-like creatures a long, long time ago.”

Differential
reproduction

“The ones that survived reproduced faster and had more population.”

Differential
survival

“It’s the one who has more chance to survive, that in the population, that’s make the
evolution, and adaptation.”

Environmental
pressures

“Each different species adapted to its environment, and like, became different in
some way, from its like ancestors . . .”

Inheritance “Those that had larger beaks were favored by the environment, so they were able to
eat, breed, and then their offspring continued to do the same.”

Shared traits “They all have these characteristics of hair, amniotic sac, backbones . . .”
Taxonomic
relationships

“Because dolphins are mammals [. . .] meaning that they’ll be closely related.”

Intuitive Reasoning Example
Connectedness “It shows the connection between them.”
Need-based
reasoning

“Because each of them had their own specific need to live in a different
environment, so they adapted to what they needed from the environment.”

Journal of Research in Science Teaching

VISUALIZING BIOLOGICAL DATA IN MUSEUMS 9



Patterns, CommonDescent, Shared Traits, Taxonomic Relationships), in response to the 10 open-

ended questions. In addition, to assess youths’ initial responses, the first open-ended question

asked “What [is] the tree of life all about?” Thereforewe report participants’ use ofTree Terms and

Tree Concepts in response to this single question. Further, as the concepts of relationship and

connectedness were hypothesized to be intuitive concepts associated with tree-of-life reasoning,

we constructed a measure of the use of the Relate Term and its morphological variants and

the use of the Connectedness Concept across the same 10 open-ended questions. For the latter

code, we coded all responses that referred to species being “connected” without explicit reference

to the degree of relatedness between species (e.g., The tree of life shows “how they are all attached

to each other”).

Participants were also asked to interpret a tree of life graphic with three closed-ended

questions (Tree Reading). For each question, youth identified the species that have traits in

common (e.g., “Point to the living things that have a backbone”). Accuracy on each of the three

questions was averaged to produce a mean composite score of 0–1 (a: 0.76). Finally, participants
were asked to indicate their agreement (1–5 scale) with five closed-ended questions related to

Common Ancestry (adapted from Poling & Evans, 2004), each of which conveyed the idea that

different kinds of organisms share ancestors (e.g., “Some kids said that bears and sunflowers had

the same ancestor a long, long time ago. Do you agree or disagree with them?”). The mean score

across the fivequestions yielded a 1–5 composite score (a: 0.81).

Evolution process (EP) measures. To assess evolution process reasoning, we coded each

participant’s use of Evolution Process Terms (Adaptation, Gene, Separate, Time) and Evolution

Process Concepts (Differential Reproduction, Differential Survival, Environmental Pressures,

Inheritance) in response to the same 10 open-ended questions. We also coded participants’ use of

intuitiveNeed-BasedReasoning.

For the closed-ended measures, participants indicated their agreement (1–5 scale) with five

statements that evolution is an ongoing process (Ongoing Evolution: 1–5 scale; a: 0.70).

Participants were also presented with four evolution process scenarios, each of which yielded

four closed-ended statements and one of the 10 open-ended questions. The statements assessed

youth informed and intuitive reasoning about evolution processes. Each EP closed-ended

composite consisted of the averaged agreement score (1–5 scale) across the four statements,

one for each scenario. For example, for Natural Selection Agreement, youth presented with the

Canary Island Lizard scenario were first asked an open-ended question, “[. . .] How did it

happen that there were so many brown-colored lizards on the sandy shores of the island?”

Then they were asked how much they agreed with the statement: “[. . .] the seabirds ate the

colorful lizards; the brown lizards lived and they had babies that looked like them.” This kind

of explanation was repeated for all scenarios.

These composite scores across the four scenarios yielded measures of: Evolution Agreement

(a 0.78);Natural Selection Agreement (a: 0.53; MIIC: 0.22);Need-Based Agreement (three items

-a: 0.51; MIIC: 0.27);Want-Based Disagreement (a: 0.64; MIIC: 0.32); Design-Based Disagree-

ment (a: 0.90). As scales with fewer than 10 items often have low alpha values, we also report

the mean inter-item correlation (MIIC: optimal range 0.2–0.4) for those measures with alphas

below 0.70. The later two measures,Want-Based Disagreement andDesign-Based Disagreement

were intended to assess intentional or anthropomorphic reasoning.

Physical Interaction Measures. For our second research question, we analyzed the

relationship between dyads’ physical interaction with the tabletop exhibit and several learning

outcomes. These measures were derived from an analysis of computer logs of participants’ touch

interactions with the tabletop. Seven touch logs were unavailable due to network connections

Journal of Research in Science Teaching

10 HORN ET AL.



problems. Because the touch sensing technology could not differentiate touches of individual

participants (and because video recordings of the dyad sessions did not consistently include

faces), these measures applied to the dyad as a whole. In total we had touch data for 54 dyads.

We constructed one measure of dyads’ overall touch interaction with the exhibit: Total

Touches. This measure was a summation all touch-input events on the tabletop recorded by

our event logging system (M¼ 116.61, SD¼ 46.79; Range¼ 42–221). We also recorded

dyads’ use of three key exhibit features. First we recorded the number of times dyads used

the relate function to compare two species: Relates Activated (M¼ 2.67, SD¼ 2.0, Range¼
0–10). Second, we recorded the number of times dyads then opened the simplified “training tree”

shown in Figure 2: Training Trees Activated (M¼ 3.00, SD¼2.1, Range¼ 0�9). Finally,

from the training tree, dyads could tap on glowing double helix icons to reveal more

information about important evolutionary landmarks: Traits Activated (M¼ 5.61, SD¼ 4.88,

Range¼ 0–17). When tapped, the software would display text, images, and in some cases, short

video clips.

Verbal Engagement (Conversation). For the second research question, we also analyzed

dyads’ verbal engagement as they interacted with the tabletop exhibit. To measure verbal

engagement we analyzed dyad conversation using the transcripts of discussion at the tabletop.

We used a computer script to count occurrences of individual words in the transcripts grouped

by the morphological stem related to a specific key concept. We then examined all words used

at least ten times across all of the dyad sessions and created several categories (including the

total number of words). In creating these categories we focused on key evolutionary or

biological terms related to our learning outcomes as these plausibly signaled engagement with

the material. We also included affect words, reasoning that these reflected deeper or more

enjoyable levels of engagement and potentially better learning outcomes. Again, because we

could not distinguish individual speakers from the session transcripts, these measures applied

to the dyad as a group. We constructed the following five measures based on our word

categories:

(1) TotalWords.Mean: 406.92 (SD= 289.11,Range¼ 17–989).

(2) Affect Words. Mean: 7.61 (SD¼ 7.74, Range¼ 0–31); (love, cute, pretty, wow, cool, etc.).

(3) Tree of Life Words. Mean: 16.2 (SD=15.32, Range¼ 0–62); (tree, relate, population, etc.).

(4) Animal Words. Mean: 9.33 (SD=8.61, Range¼ 0–30); (cat, shark, banana, human, etc.).

(5) Trait Words. Mean: 2.76 (SD=3.82, Range¼ 0–17); (eukaryotes, nuclei, DNA, cells, etc.).

Results

The resultswill be reported in two sections, each addressing a different research question.

RQ1: What Are the Effects of Condition and Age on Learning Outcomes?

To answer the first research question we conducted two-way ANOVAs on the learning

outcomes, with condition (four: DeepTree I, DeepTree II, Video, and Baseline) and age group

(two: Young, Old) as factors. Tukey post-hoc tests were used to evaluate the effects of condition1.

Effect sizes were estimated using partial eta squared, which can be interpreted as: small

0.01–0.05,medium0.06–0.137, or large 0.138 and higher (Cohen, 1988).

Tree of Life Results. Overall, for tree of life reasoning, results for all measures were similar.

The DeepTree II condition and, to a lesser extent, the DeepTree I condition, elicited scores that

were significantly higher than baseline (seeTable 3). Thereweremain effects of age and condition,

but no interactions, an indication that both agegroupsmade learning gains.
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For the first open-ended question (“What is the tree of life all about?”), the use of Tree Terms

was significantly higher for participants in both DeepTree conditions (hp
2¼ 0.11), with no effect

of age and no significant interaction (see Table 3 for means, standard deviations, F tests, and

p-values). Likewise, forTreeConcepts therewas a significant effect of condition (hp
2¼ 0.05), but,

in this case,DeepTree IIwas the only condition significantly different frombaseline.

Overall, across the 10 open-ended questions there was a significant main effect of condition

for the Relate Term (hp
2¼ 0.06), Tree Terms (hp

2¼ 0.07) and Tree Concepts (hp
2¼ 0.04), with

participants in both DeepTree conditions scoring significantly higher than the baseline in all but

one case (see Table 3). There was no effect of age for the Relate Term (hp
2¼ 0.01), but there were

significant effects of age and no interactions for Tree Terms (hp
2¼ 0.03) and Tree Concepts

(hp
2¼ 0.04). For Tree Terms, participant responses in the DeepTree II condition were also

significantly different from those in the Video condition (p¼ 0.005). For the Connectedness

Concept, a marginal main effect was found for condition: F(3,239)¼ 2.48, p¼ 0.062, hp
2¼ 0.03.

In this case only, youth in the Video condition were significantly more likely to use this concept

than those in the DeepTree I condition; there were no other condition effects, but there was a

significant effect of age,with older childrenmore likely to endorse connectedness (SeeTable 3).

A similar pattern was apparent for the closed-ended measures. For Common Ancestry there

was a main effect of condition (hp
2¼ 0.04) and age (hp

2¼ 0.06) and no significant interaction.

Both DeepTree conditions were significantly different from baseline (but not from each other),

with DeepTree II also significantly different from the Video condition (p¼ 0.005). For Tree

Reading, there were main effects for condition (hp
2¼ 0.04) and age (hp

2¼ 0.18), with older

participants and those in theDeepTree II condition performing at a significantly higher level.

The overall pattern for the condition effect was a clear finding that participants inDeepTree II

consistently scored at higher levels (compared to baseline) on the closed-ended measures and

were more likely to use tree terms and concepts in their explanations, regardless of age. Although

DeepTree Iwas less effective overall (compared to baseline) for the Tree Readingmeasure and for

eliciting Tree Concepts, it was similarly effective at eliciting evolutionary terms and higher

Common Ancestry agreement scores. The Video condition consistently elicited higher scores

compared to the baseline, but the differenceswere not significant (seeTable 3).

The main effects of age were driven by older youth who consistently performed at a higher

level than younger youth on all the main measures. Two deviations from this pattern were found

for Relate Term and responses to the initial question (“What is the tree of life all about?”) where

there were no significant age-related differences. This finding suggests that while younger

participants were able to use the knowledge they gained from the tabletop interactions to respond

to the first tree of life question, itwas the older youthwhowere better able to extend this knowledge

effectively across all 10 questions. It also suggests that relatedness, but not connectedness, may be

a bridging concept enabling youth tomake links between intuitive andmore informed reasoning.

Evolution Process Results. In contrast to the tree of life measures, for evolution process (EP)

reasoning there were main effects of age but no main effects for condition with no significant

interactions (see Table 4). For the informed reasoning measures: Evolution Process Terms

(hp
2¼ 0.05), Evolution Process Concepts (hp

2¼ 0.05), Ongoing Evolution (hp
2¼ 0.07), Natural

Selection Agreement (hp
2¼ 0.02), and Evolution Agreement (hp

2¼ 0.05), older youth performed

at significantly higher levels.

Similarly, for the intuitive reasoning concepts there were no effects of condition. For the

open-ended questions, older youth were more likely than younger youth to use Need-Based

Reasoning (hp
2¼ 0.03). Likewise, on the closed-ended questions across the four scenarios, older

youth were more likely to endorse Need-Based Agreement (hp
2¼ 0.02), Design-Based
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Disagreement (hp
2¼ 0.02), and Want-Based Disagreement (hp

2¼ 0.04) (see Table 4). This age-

related pattern of endorsements for the intuitive concepts is consistent with prior research (Legare

et al., 2013; Spiegel et al., 2012).

One possible reason for the lack of a significant effect of condition for the evolution process

reasoning overall may have been that the measures themselves did not have good construct

validity. Theoretically, all five informed evolution process measures should be positively

correlated with: one another (rs¼ 0.18–0.38; ps< 0.01), age (rs¼ 0.14–0.31; ps< 0.05), the tree

of life measures, Common Ancestry and Tree Reading (rs¼ 0.18–0.47; ps< 0.01), Need-Based

Agreement (rs¼ 0.17–0.45; ps< 0.01),Design-Based Disagreement (rs¼ 0.14–0.25; ps< 0.05),

andWant-Based Disagreement (rs¼ 0.13–0.23; ps< 0.01).2 Although there was variation in the

strength of the correlations, this pattern of relationships is consistent with the argument that these

variableswere assessing participants’ understanding of evolutionary processes.

RQ2: How do Verbal Engagement and Physical Interaction Contribute to Learning

Outcomes in the Tabletop (DeepTree) Conditions?

The second research question focused on features of youth engagement that were likely to

explain the learning outcomes for our tree of life measures. For this question we focused

exclusively on the tabletop conditions because participants could not physically interact with the

video, and because we assumed that participant speech in the Video condition would be very

limited. One reason for this assumption is that the multi-touch tabletop interface often requires

dyads to negotiate their exploration of the content, particularly when they have conflicting ideas

about what to do. In contrast, we believed that the voiceover narrative in the Video condition

would allow for less discussion. To verify this assumption, we transcribed the video recordings of

the dyad discussion in the three experimental conditions. Due to background noise in themuseum

environment, the audiowas not of sufficient quality to produce a transcript in all cases. In total, we

transcribed 83 of 93 sessions (27 of 30 in DeepTree I; 29 of 31 in DeepTree II; and 27 of 32 in the

Video condition).When participant voices were not clear enough, we used an inaudiblemarker in

the transcripts.As described earlier, it was not possible to individuate the conversation because the

video recordings did not always include the faces of the participants. As an approximation of the

overall level of verbal interaction, we counted the number of words spoken by both participants.

Inaudible segments were counted as one word. On average dyads in DeepTree I spoke 444.85

Table 4

Effect of age-group (mean, SD) on evolutionary process (EP) reasoning

Measure Young age group Old age-group Effect of age (F)

Mean use across 10 questions
Evolution process terms 0.05 (0.06) 0.08 (0.06) 13.64���
Evolution process concepts 0.03 (0.03) 0.04 (0.04) 14.31���
Need-based reasoning 0.12 (0.15) 0.17 (0.17) 6.04�

Closed-ended measures: informed evolutionary process reasoning
Ongoing evolution 3.70 (0.76) 4.12 (0.71) 19.61���
Natural selection agreement 3.63 (0.72) 3.85 (0.75) 5.55�
Evolution agreement 3.55 (0.88) 3.97 (0.90) 13.40���

Closed-ended measures: intuitive evolutionary process reasoning
Need-based agreement 3.59 (0.74) 3.82 (0.81) 5.30�
Design-based disagreement 3.98 (1.02) 4.25 (1.00) 4.57�
Want-based disagreement 3.07 (0.66) 3.30 (0.52) 9.48��

�p< 0.05; ��p< 0.01; ���p< 0.001.
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words per session (SD¼ 227.32), while dyads in the DeepTree II spoke 434.83 words per session

(SD¼ 290.56). Three dyads across both tabletop conditions did not speak at all during their entire

sessions. In contrast, dyads in the Video condition spoke an average of 6.96 words per session

(SD¼ 14.60), only 1.6% of the words spoken by participants in the tabletop conditions. Notably,

20 dyads in theVideo condition did not speak at all.

Having established that verbal exchanges were minimal in the Video condition (in

comparison to DeepTree I and DeepTree II), we focused our attention on the tabletop conditions

and the relationship between measures of verbal engagement, physical interaction, and learning

outcomes from the exit interview. Because the two DeepTree conditions did not differ

significantly from one another in RQ1, we combined their data for these analyses.We first report

correlations between our verbal and physical measures and the learning outcomes. This is

followed by series of analyses using Linear MixedModels in which we examined the individual

contributions of physical and verbal engagement to the different learning outcomes. Age and

family background were also included in the models. Although the latter variables did not differ

significantly between conditions, they were likely to contribute to learning outcomes within a

condition.

Correlation Between Verbal and PhysicalMeasures and LearningOutcomes.Wefirst related

our measures of physical interaction (described in the Procedure section) to four key learning

outcome measures for which there were consistent significant effects of condition in RQ1 (see

Table 3). For the two of the measures, Common Ancestry and Tree Reading, there were strong

effects of age as well. From the open-ended measures, we selected Relate Term because therewas

no main effect of age, suggesting that it reflected a more basic understanding of tree reasoning

accessible to both age groups; on the other hand, Tree Concepts elicited a strong effect for age,

suggesting, in turn, that it reflected a deeper level of understanding. This analysis allowed us to

explore the relationship between age, engagement, and levels of evolutionary reasoning, a

necessary first step in the construction of a developmental learning trajectory.

As can be seen in Table 5 (upper half), for the measures of physical interaction youth who

more often activated the relate, training tree, and trait functions in the tabletop exhibit were more

likely to use the Relate Term in the open-ended questions and achieve higher scores on Tree

Reading in the subsequent exit interview. Additionally, Relates Activated was significantly

Table 5

Correlations between learning outcomes and measures of physical engagement (top) and social

engagement (bottom) across the two tabletop conditions (DeepTree I and DeepTree II)

Relate Terms Tree Concepts Common Ancestry Tree Reading

Measures of physical engagement (n¼ 107)
Total touches ns 0.16+ 0.19+ ns
Relates activated 0.36�� ns 0.20� 0.22�
Training trees activated 0.24� ns ns 0.19�
Traits activated 0.30�� ns 0.16+ 0.26��

Measures of social engagement (n¼ 113)
Total words ns 0.21� 0.31�� ns
Affect words 0.21� 0.27�� 0.33�� 0.22�
Tree words ns ns 0.29�� ns
Animal words 0.30�� 0.16+ 0.24� 0.16+

Trait words 0.21� 0.21� 0.30�� ns

þp< 0.10; �p< 0.05; ��p< 0.01; ���p< 0.001.
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correlated with Common Ancestry. There was no significant correlation between Total Touches

and any learning outcome. Further, none of the physical interactionmeasureswere correlatedwith

the use ofTreeConcepts in the exit interview.

The correlations between these measures of verbal engagement (described in the Procedure

section) and the same four outcome measures (Table 5, lower half) demonstrate a consistent

pattern. There were positive correlations between use of particular content-related words in dyad

conversation and most of the subsequent learning outcomes. Most notably, the more Affect Words

used during the exhibit interaction, the more likely youth were to score at higher levels on all four

learning outcomes.

Relationship Between Verbal and Physical Measures.Aswe expected, therewere significant

correlations between our measures of physical interaction and verbal engagement. This finding

indicates that conversation and physical activation of the content went hand-in-hand. Specifically,

Relates Activated was positively correlated with Affect Words (r¼ 0.25, p¼ 0.018) and Animal

Words (r¼ 0.34, p¼ 0.001); Traits Activated was positively correlated with Animal Words

(r¼ 0.30, p¼ 0.001) and Trait Words (r¼ 0.23, p¼ 0.028); and Total Touches was positively

correlatedwithAffectWords (r¼ 0.21, p¼ 0.049).

Although there were positive relationships between the physical and verbal measures, the

pattern of correlations suggests that they contributed to learning outcomes in different ways. For

example Common Ancestry agreement was significantly correlated with all of the measures of

verbal engagement, but only one measure of physical interaction, Relates Activated. Tree

Reading, on the other hand, was positively correlated with the three key measures of physical

interaction, butwith only oneverbal engagementmeasure,AffectWords.

Linear Mixed Models. To understand the contribution of our engagement measures to

learning outcomes, in our final analysis we used linear mixed models (LMMs). Our models

focused on the effects of verbal engagement and physical interaction on the four overall outcome

measures as well as on two outcomemeasures from the first open-ended question (see Table 3). In

each of these analyses we used a LMM with a random effect per dyad to take into account the

correlation among measures for individuals within the dyad. All other variables were entered as

fixed effects. It should be noted that for LMManalyses there is no commonly accepted assessment

of the overall variance explained by the model (Nezlek, 2008); however, as it is the individual

contributions of each predictor that is of interest in this study, those statisticswill be reported.

The key question addressed with these analyses is whether the physical and verbal measures

elicited different learning outcomes. We were further interested in whether the significant

correlations between measures of dyadic engagement and learning outcomes (reported above)

were a reflection of age, prior knowledge, or family background of participants. In other words,

were more knowledgeable youth more likely to find the exhibit engaging and thus more likely to

dowell on the learning measures? Or, did higher levels of youth engagement elicit better learning

outcomes independent of family background?

To assess these questions, we used parents’ endorsement of evolutionary origins (see

Table S1) as an indicator of family background. This measure resembled the content of the

learning outcomes and was positively correlated with other relevant parent variables including

parental rating of the importance of evolution for scientists/self (r¼ 0.60, p¼< 0.001) and parent

education level (r¼ 0.36, p¼< 0.001). Parental rating of youth evolution knowledgewas used as

a proxy measure of youth prior knowledge. This measure was positively correlated with all four

learning outcomes (rs 0.14–0.20, ps< 0.05). Thus, for each of the following analyses we included

youth age, parent endorsement of evolutionary origins (Parent Belief), and youth evolution
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knowledge (Youth Knowledge) as predictors, along with the most highly correlated measures of

physical and/or verbal engagement for each of the main learning outcomes (see Table 5). Herewe

present theLMManalysis for each learning outcome:

Relate Terms Used. Youth age, Parent Belief, Youth Knowledge, Animal Words, and Relates

Activatedwere included in themodel forRelate Terms. Significant effects independent of the other

variableswere found forAnimalWords (Est. 0.003, SE0.001, df 43.7, t¼ 2.23, p¼ 0.031),Relates

Activated (Est. 0.02, SE0.006, df 53.2, t¼ 2.65, p¼ 0.010), andParent Belief (Est. 0.2, SE 0.01, df

46.13, t¼ 2.08, p¼ 0.043).

Common Ancestry. Youth age, Parent Belief, Youth Knowledge, Affect Words, Trait Words,

and Relates Activated were included in the model for Common Ancestry Agreement. Significant

effects independent of the other variables were found forAffectWords (Est. 0.03, SE 0.01, df 45.2,

t¼ 2.39, p¼ 0.021) and Trait Words (Est. 0.07, SE 0.03, df 44.5, t¼ 2.43, p¼ 0.019). A marginal

effectwas found for youth age aswell (Est. 0.11, SE0.06, df 82.27, t¼ 1.94, p¼ 0.056).

TreeConcepts.Youth age,Parent Belief,YouthKnowledge,AffectWords, andTraits Activated

were included in the model for Tree Concepts. Significant effects independent of the other

variableswere found for youth age only (Est. 0.08, SE0.003, df 78.7, t¼ 2.32,p¼ 0.023).

Tree Reading.Youth age,Parent Belief, Youth Knowledge,Affect Words, and Traits Activated

were included in themodel forTree Reading accuracy. Significant effects independent of the other

variableswere found for age only (Est. 0.08, SE0.02, df 84, t¼ 3.26, p¼ 0.002).

What Is the Tree of Life All About?. LMMs for the two measures used to assess youth

responses to the first open-ended question about the tree of life were included because they

offered insights into the immediate effects of the exhibit. The Tree Terms and Tree Concepts

found in youth explanations for the opening question were significantly correlated with

Relates Activated (rs 0.29, ps¼ 0.003) in the DeepTree exhibit and the Trait Words in dyads’

conversation (rs 0.19–0.24, ps¼< 0.05). Youth age, Parent Belief, Youth Knowledge, Trait

Words, and Relates Activated were included in the models for the two outcomes, in turn: (i) For

Tree Terms, significant effects independent of the other variables were found forRelates Activated

(Est. 0.26, SE 0.01, df 47.8, t¼ 2.56, p¼ 0.014), Trait Words (Est. 0.12, SE 0.005, df 41.57,

t¼ 2.12, p¼ 0.040), and Parent Belief (Est. 0.4, SE 0.02, df 42.95, t¼ 2.20, p¼ 0.033); (ii) For

Tree Concepts, significant effects independent of the other variables were found for Relates

Activated (Est. 0.01, SE 0.005, df 50.2, t¼ 2.21, p¼ 0.032) and a marginal effect for Trait Words

(Est. 0.05, SE0.003, df 43.8, t¼ 1.87,p¼ 0.068).

Overall, the LMMsdemonstrate thatmeasures of verbal engagement and physical interaction

explain variance in the learning outcomes independent of one another and independent of prior

knowledge and parent acceptance of evolution. It should be noted, however, that agewas themain

independent predictor of two outcomes: Tree Reading accuracy and Tree Concepts found in youth

responses to the 10 open-ended questions. For these two outcomes, older youth were more likely

to benefit from the exhibit interaction, regardless of family background. However, measures of

engagement did predict other learning outcomes, regardless of age and family background.

Specifically, activation of the relate function on the tabletop and the use of animal words in dyad

conversation predicted the frequency of Relate Terms in the overall explanations. Similarly,

activation of the relate function anduse of traitwords in dyad conversation predicted the frequency

of Tree Terms and Tree Concepts in response to the first open-ended question. Moreover, the

frequency of trait and affect words in the dyad conversation predicted the likelihood that youth

would endorse the rather abstract concept ofCommonAncestry.
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Discussion

The popularity of interactive surfaces in museums has created unique opportunities for

visitors to “touch” and explore large scientific datasets. Beyond reflecting the increasingly

computational nature of science, such experiences may create new opportunities for learning.

Whilewe know that large evolution exhibitionswithmultiple interactive components can provide

effective learning experiences (Evans et al., 2015; Spiegel et al., 2012; Tare et al., 2011), the

current study addressedwhether learning occurs in a brief interactionwith a dynamic visualization

of the tree of life including over 70,000 species. We were also interested in understanding how

different features of physical interaction and verbal engagement contributed to visitor learning

with themulti-touch tabletop.

Our first research question focused on the effects of exhibit condition and age on youth

understanding of evolution concepts. The DeepTree conditions engaged youth dyads in the

exploration of a large interactive phylogenetic tree. The DeepTree I condition also included an

embedded activity on evolutionary processes called FloTree. The Video condition, meanwhile,

consisted of a video of the same length on similar evolution concepts. Outcomes were compared

to those of youth in a baseline condition with no intervention. The overall pattern of our results

comparing conditions was very clear. Youth in the DeepTree conditions (and DeepTree II, in

particular) consistently scored at higher levels than youth in the baseline condition on both

open and closed-ended measures of shared ancestry, common descent, and the tree of life.

Specifically, youth in the DeepTree conditions were significantly more likely to invoke tree of

life concepts and terminology in their open-ended responses. These subjects were also

significantly more likely to correctly interpret a phylogenetic tree diagram and endorse

ideas of common ancestry in closed-ended items. Surprisingly, a brief, open-ended museum

experience yielded consistent learning outcomes about phylogeny, a complex and difficult

science concept. Furthermore, there were significant main effects of age for many of our

measures. Older youth demonstrated amore consistent and informed understanding of evolution

than younger youth, with the exception of basic concepts of relatedness, which were the same

for both groups.

Our study design also included a Video condition as a way to represent a typical learning

experience that visitors might encounter at a natural history museum. Our results show that while

therewere positive trends acrossmany of ourmeasures for theVideo condition, almost none of the

learning gains were significant with respect to the baseline. Notably, apart from connectedness,

the expert language used by the narrators in the video did not seem to elicit significant comparable

language in the youth explanations. Participation in the tabletop conditions, in contrast, was

associatedwith an increase in evolutionary language and concepts.

Although the current study focused heavily on youth understanding of macroevolutionary

concepts, the FloTree component of the DeepTree I condition addressed microevolutionary

processes as well. Counter to our predictions, the FloTree application did not facilitate youth

understanding of processes such as differential survival and differential reproduction. One

possible explanation is that the forced transition to FloTreemay have distracted participants while

shortening the overall exposure to the individual components. However, the animated portrayal of

natural selection in theVideo conditionwas also unsuccessful in this regard.

Understanding Contributions of Verbal Engagement and Physical Interaction

In our second research questionwe investigated the effects of verbal engagement and physical

interaction onyouth learning in the tabletop conditions (DeepTree I andDeepTree II).Using video

transcripts and computer logs, we constructed several measures of physical interaction with the
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tabletop and verbal interaction between participants. We then examined correlations between

thesemeasures of engagement and the key learning outcomes. These analyses revealed significant

relationships. Even though our physical and verbal measures were inter-correlated, the pattern of

relationships suggested that they contributed to learning outcomes in different ways. Optimal

learning outcomes occurred when youth dyads both activated relevant exhibit functions and

conversed about the specific experience. This pattern was confirmed through the use of linear

mixedmodels. Thesemodels indicated that severalmeasures of engagement specifically predicted

higher learning outcomes for our tree of lifemeasures. In particular, youthwho activated the relate

function more frequently were more likely to use the relate term in their responses to open-ended

questions and to use tree terms and tree concepts in their response to the first open-ended question

on the tree of life.Moreover, dyadswhose conversation included higher numbers of affect and trait

words were more likely to endorse the idea that diverse species have an ancestor in common.

Notably these relationships held even when controlling for family background, youth age, and

prior knowledge. These results also highlight the fact that the overall level of verbal engagement

(total number of words spoken) and the overall level of physical interaction (total number of

touches) were not the best predictors of learning. Rather, learning depended on the specifics of

what youth were saying and how they used the table. Moreover, affect words (such as wow, cool,

and hah) were significantly correlated with all of the learning measures we considered. Our

measures of engagement do not address more nuanced elements of dyadic interaction and shared

meaning making. However, we have conducted a detailed qualitative analysis of interaction and

learning based on video recordings of ten dyads from this study, which is the focus of another

paper (Davis et al., 2015).

Towards a Developmental Learning Trajectory

Our age-related findings also offer insight into the concept of a developmental learning

trajectory for understanding common descent. Youth in both age groups benefited from

interacting with DeepTree, indicating that the exhibit was successful for different levels of

prior knowledge. Moreover, the age-related patterns suggested a learning trajectory for the

acquisition of tree-of-life concepts, from relatedness, to shared ancestry, to more complex

tree concepts.

Activation of the relate function in the exhibit and use of “animal terms” in the conversation

were associated with an increased understanding of evolutionary relationships in the exit

interview, for both age groups. Moreover, there were no significant age-related differences

in youth use of the relate term. In this case, youth appeared to be relying both on intuitive

notions of family relatedness (e.g., the tree of life is about “how you are related to someone’s

family” 10-year-old #571b) as well as more expert explanations of evolutionary relatedness

(e.g., the tree of life is about “how things relate. . . like billions of years ago. . . it shows how,
like, bananas and squids. . . how they were like kind of the same, once” 12-year-old #556a).

These data suggest that reasoning about family relationships may facilitate rather than

impede youth’s interpretation and understanding of common descent. Older youth, though,

were better at decoding these relationships in the tree of life graphic and employing more

complex tree concepts, such as branching patterns and shared traits, in their explanations in the

exit interview.

This pattern for the relatedness concept is consistent with prior research suggesting that

intuitive reasoning patterns are not necessarily abandoned or “overcome” as students acquire

evolutionary constructs. Rather, they may provide a foundation for a more scientifically accurate

understanding (Evans et al., 2012). For example, in this study, in contrast to their younger siblings,

older youth were more likely to incorporate need-based reasoning (e.g., “because the different
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kinds [of anoles] need to adapt to their different environments” 14-year-old #122b) in their

responses, while rejecting the anthropomorphic explanations (e.g., The lizards changed

over time because “they do not like to get eaten” 11-year-old #559b). Moreover, in contrast

to anthropomorphic reasoning, need-based reasoning was positively associated with the

evolutionary process learning outcomes. These findings bolster the argument that need-based

reasoning can potentially provide a foundation for a more sophisticated understanding of

microevolution, if it is disassociated from anthropomorphic concepts (Legare et al., 2013; Spiegel

et al., 2012).

This kind of logic could also be applied to essentialist reasoning. Perhaps essentialism is not

necessarily the barrier tomacroevolutionary reasoning that prior research has claimed (Gelman&

Rhodes, 2012; Shtulman & Schulz, 2008). By activating the relate function and conversing about

species and their shared traits, youth were repeatedly exposed to the idea that diverse species are

related. Such youth were more likely to endorse the idea of common ancestry. We propose that

these youth generalized their concept of “essence,” from its original application to a single species

or kind, to all living things.DNAnowrepresents the “essence” of our shared evolutionaryheritage,

the family of all living things onEarth.

Limitations

There were limitations of this study that should be taken into account when interpreting

these results. Foremost, we assessed only short-term learning outcomes immediately following

the intervention. While we acknowledge this as a limitation, we point out that establishing short-

term learning gains is a crucial first step. Furthermore, the prevalence of affectwords in participant

speech gives us some hope that long-term gains in youth understanding are feasible. Research

on the neurobiology of memory, for example, indicates that emotionally arousing stimuli are

more likely to be consolidated and preserved over the long term (McGaugh, 2006). We also note

that there were limits to the ecological validity of our design. In particular, youth were recruited,

video recorded, and asked to participate with a sibling or friend for a fixed period of time, all of

which are known to affect participant behavior (Block et al., 2015). However, some degree of

control was necessary for us to collect in-depth data on engagement and to establish statistically

significant differences based on youth age and condition. Based on naturalistic observations

conducted as part of a summative evaluation of the exhibit, we found that active and prolonged

periods of engagement were not uncommon among dyads or visitor family groups, suggesting

that our experimental setup had some correspondence to the types of engagement we might

expect to see with more informal use of the DeepTree exhibit (Block et al., 2015). Finally,

our sample reflects audiences that typically attend natural history museums in that most

participant families were well educated and not necessarily representative of the broader

population (Korn, 1995).

Implications

Taken together, these findings suggest important implications for the design of exhibits

featuring visualizations of large scientific datasets. The most obvious implication is to provide

adequate support for social interaction. Large interactive surfaces such as multi-touch tabletops

can be effective for encouraging simultaneous use by multiple visitors, but this does not imply

that visitors will interact or work together in productive ways. In fact, conflict, interference, and

confusion are more likely outcomes in the absence of careful design and testing. Given the level

of verbal engagement that we observed and its positive contribution to learning outcomes, we

believe that promoting effective social interaction warrants special attention in the design

process.
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A second implication relates to self-directed engagement. Through our iterative design work

we found that it was important to provide visitors with the opportunity for open-ended exploration

with the support of “gentle guidance” (Humphrey & Gutwill, 2005) built into the interaction.

Along these lines, including small amounts of video or expository text seemed valuable provided

that they did not interferewith visitors’ sense of control. The forced transition to the FloTree in the

first tabletop condition seemed, in retrospect, counterproductive to learning. In this case,

participants were presented with a highly interactive experience, yet in the absence of sufficient

guidance were unable to interpret the microevolutionary processes displayed. Video of

participants in this condition showed that the forced transitions were often confusing, interrupting

otherwise productive sessions.

A third implication derives from the significant effect of the built-in relate function on the

learning outcomes. DeepTree gives visitors the ability to repeatedly compare species across the

span of all domains of life on Earth. This provided novices with an intuitive stepping stone from

which to transition from an everyday understanding of “relationships” toward the scientific

concept of evolutionary relatedness. Our results indicate that such scaffolding, in the form of

repeated use of the relate function, contributed to the successful learning experiences. Similar

intuitive conceptualmappingswill likely apply to other scientific disciplines.

The final implication is that interactive visualizations of large scientific datasets hold promise

for promoting learning about complex science concepts inmuseums. These exhibits can be useful

as a way for natural history museums to reflect the changing nature of scientific inquiry, an

endeavor that increasingly relies on large data sets and computational tools andmethods. But they

can also be used to create new types of learning experiences for visitors. In sum,while our learning

objectives and measures concerned concepts of evolution and biodiversity, we believe that our

findingsmake a compelling case that such experiences areworthy of further study across a broader

array of science concepts.
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Notes
1
Two alternative analyses were also conducted to investigate the age effects: (1) Using

ANCOVAs, with age as a continuous covariate, we checked whether the age effect was

underestimated in the ANOVAs (2) Using linear mixed models to account for possible non-

independent age data for dyads in the tabletop conditions. As the results were essentially the same

as those for the ANOVAs, we used the latter analysis as it was easier to present the age-group

results (inRQ2, age effects in the table top conditionswere evaluated using linearmixedmodels).
2
Exceptions to this pattern were the non-significant correlations between Natural Selection

Agreement and (1) Want- and (2) Design-Based Disagreement; these occurred because of

interactionswith age-group, assessments ofwhich are beyond the scope of this paper.
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